A new method based on headspace programmed-temperature vaporizer gas chromatography with mass spectrometry has been developed and validated for the determination of amino acids (alanine, sarcosine, ethylglycine, valine, leucine, and proline) in human urine samples. Derivatization with ethyl chloroformate was employed successfully to determine the amino acids. The derivatization reaction conditions as well as the variables of the headspace sampling were optimized. The existence of a matrix effect was checked and the analytical characteristics of the method were determined. The limits of detection were 0.15-2.89 mg/L, and the limits of quantification were 0.46-8.67 mg/L. The instrumental repeatability was 1.6-11.5%. The quantification of the amino acids in six urine samples from healthy subjects was performed with the method developed with the one-point standard additions protocol, with norleucine as the internal standard.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.201600186DOI Listing

Publication Analysis

Top Keywords

amino acids
16
urine samples
12
headspace programmed-temperature
8
programmed-temperature vaporizer
8
vaporizer gas
8
gas chromatography
8
chromatography mass
8
mass spectrometry
8
determination amino
8
derivatization coupled
4

Similar Publications

Background: Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino acid metabolism offers potential avenues for improving patient clinical outcomes.

View Article and Find Full Text PDF

NUFIP1 integrates amino acid sensing and DNA damage response to maintain the intestinal homeostasis.

Nat Metab

January 2025

Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; School of Basic Medical Sciences, Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China.

Nutrient availability strongly affects intestinal homeostasis. Here, we report that low-protein (LP) diets decrease amino acids levels, impair the DNA damage response (DDR), cause DNA damage and exacerbate inflammation in intestinal tissues of male mice with inflammatory bowel disease (IBD). Intriguingly, loss of nuclear fragile X mental retardation-interacting protein 1 (NUFIP1) contributes to the amino acid deficiency-induced impairment of the DDR in vivo and in vitro and induces necroptosis-related spontaneous enteritis.

View Article and Find Full Text PDF

Targeted metabolomics reveals novel diagnostic biomarkers for colorectal cancer.

Mol Oncol

January 2025

Shanghai Stomatological Hospital & School of Stomatology & Institutes of Biomedical Sciences, Fudan University, Shanghai, China.

Colorectal cancer (CRC) is a prevalent malignant tumor worldwide, with a high mortality rate due to its complex etiology and limited early screening techniques. This study aimed to identify potential biomarkers for early detection of CRC utilizing targeted metabolite profiling of platelet-rich plasma (PRP). Based on multiple reaction monitoring (MRM) mode, liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis identified metabolites in PRP collected from patients with CRC (n = 70) and healthy controls (n = 30).

View Article and Find Full Text PDF

Each human genome has approximately 5 million DNA variants. Even for complete loss-of-function variants causing inherited, monogenic diseases, current understanding based on gene-specific molecular function does not adequately predict variability observed between people with identical mutations or fluctuating disease trajectories. We present a parallel paradigm for loss-of-function variants based on broader consequences to the cell when aberrant polypeptide chains of amino acids are translated from mutant RNA to generate mutated proteins.

View Article and Find Full Text PDF

EEFSEC deficiency: A selenopathy with early-onset neurodegeneration.

Am J Hum Genet

January 2025

Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; Center for Rare Disease, University of Tübingen, 72076 Tübingen, Germany; Genomics for Health in Africa (GHA), Africa-Europe Cluster of Research Excellence (CoRE).

Inborn errors of selenoprotein expression arise from deleterious variants in genes encoding selenoproteins or selenoprotein biosynthetic factors, some of which are associated with neurodegenerative disorders. This study shows that bi-allelic selenocysteine tRNA-specific eukaryotic elongation factor (EEFSEC) variants cause selenoprotein deficiency, leading to progressive neurodegeneration. EEFSEC deficiency, an autosomal recessive disorder, manifests with global developmental delay, progressive spasticity, ataxia, and seizures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!