Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nrn.2016.93 | DOI Listing |
iScience
February 2025
Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
The vagus nerve is proposed to enable communication between the gut microbiome and the brain, but activity-based evidence is lacking. We find that mice reared germ-free exhibit decreased vagal tone relative to colonized controls, which is reversed via microbiota restoration. Perfusing antibiotics into the small intestines of conventional mice, but not germ-free mice, acutely decreases vagal activity which is restored upon re-perfusion with intestinal filtrates from conventional, but not germ-free, mice.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak-484 887, MP, India.
Depression is one of the most disabling mental disorders worldwide and characterized by symptoms including worthlessness, anhedonia, sleep, and appetite disturbances. Recently, studies have suggested that tryptophan (Trp) metabolism plays a key role in depressed mood through serotonin and kynurenine pathway involving enzyme tryptophan 5-monooxygenase (TPH) and indoleamine-2,3-dioxygenase (IDO) respectively. Moreover, during neuroinflammation, IDO is activated by proinflammatory cytokines and affects neurogenesis, cognition, disturbed hypothalamic-pituitary-adrenal (HPA) axis, and gut homeostasis by altering the gut bacteria and its metabolites like Trp derivatives.
View Article and Find Full Text PDFJ Ginseng Res
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
The human gut, which contains a diverse microbiome, plays an important role in maintaining physiological balance and preserving the immune system. The complex interplay between the central nervous system (CNS) and the gut microbiome has gained significant attention due to its profound implications for overall health, particularly for gut and brain disorders. There is emerging evidence that the gut-brain axis (GBA) represents a bidirectional communication system between the CNS and the gastrointestinal tract and plays a pivotal role in regulating many aspects of human health.
View Article and Find Full Text PDFSci Rep
January 2025
Affective Psychology Department, Institute of Psychology, Eötvös Loránd University, Budapest, Hungary.
The gut–brain axis, a bidirectional communication pathway, permits the central nervous system (CNS) to exert influence over gastrointestinal function in response to stress, while the gut microbiota regulates the CNS via immune, neuroendocrine, and vagal pathways. Current research highlights the importance of the gut microbiota in stress-related disorders and the need for further research into the mechanisms of gut–brain communication, with potential therapeutic implications for a wide range of health conditions. This is a challenge taken on in this Collection on the Gut-Brain Axis.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China.
The complex relationship between diet, the gut microbiota, and mental health, particularly depression, has become a focal point of contemporary research. This critical review examines how specific dietary components, such as fiber, proteins, fats, vitamins, minerals, and bioactive compounds, shape the gut microbiome and influence microbial metabolism in order to regulate depressive outcomes. These dietary-induced changes in the gut microbiota can modulate the production of microbial metabolites, which play vital roles in gut-brain communication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!