In this Minireview, the state of the art in the use of ionic liquids (ILs) and deep eutectic solvents (DESs) as alternative reaction media for biocatalytic processes and biomass conversion is presented. Initial, proof-of-concept studies, more than a decade ago, involved first-generation ILs based on dialkylimidazolium cations and non-coordinating anions, such as tetrafluoroborate and hexafluorophosphate. More recently, emphasis has switched to more environmentally acceptable second-generation ILs comprising cations, which are designed to be compatible with enzymes and, in many cases are derived from readily available, renewable resources, such as cholinium salts. Protic ionic liquids (PILs), prepared simply by mixing inexpensive amines and acids, are particularly attractive from both an environmental and economic viewpoint. DESs, prepared by mixing inexpensive salts with, preferably renewable, hydrogen-bond donors such as glycerol and amino acids, have also proved suitable reaction media for biocatalytic conversions. A broad range of enzymes can be used in ILs, PILs and DESs, for example lipases in biodiesel production. These neoteric solvents are of particular interest, however, as reaction media for biocatalytic conversions of substrates that have limited solubility in common organic solvents, such as carbohydrates, nucleosides, steroids and polysaccharides. This has culminated in the recent focus of attention on their use as (co)solvents in the pretreatment and saccharification of lignocellulose as the initial steps in the conversion of second-generation renewable biomass into biofuels and chemicals. They can similarly be used as reaction media in subsequent conversions of hexoses and pentoses into platform chemicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201601940 | DOI Listing |
J Med Internet Res
December 2024
Laboratoire d'Informatique Médicale et d'Ingénierie des Connaissances en e-Santé - LIMICS, Inserm, Université Sorbonne Paris-Nord, Sorbonne Université, Paris, France.
Background: Artificial intelligence (AI) applied to real-world data (RWD; eg, electronic health care records) has been identified as a potentially promising technical paradigm for the pharmacovigilance field. There are several instances of AI approaches applied to RWD; however, most studies focus on unstructured RWD (conducting natural language processing on various data sources, eg, clinical notes, social media, and blogs). Hence, it is essential to investigate how AI is currently applied to structured RWD in pharmacovigilance and how new approaches could enrich the existing methodology.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan 411105, P.R. China.
The challenge of "false positive" signals significantly complicates tumor localization and surgical resection, which are pivotal for successful tumor surgeries. Therefore, the development of a method for preoperative tumor localization and intraoperative margin determination holds considerable promise for improving surgical outcomes. In this study, a zero-crosstalk ratiometric tumor-targeting near-infrared (NIR) fluorescent probe was developed for precise cancer diagnosis and intraoperative navigation via NIR fluorescence imaging.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Communication Department, California State Polytechnic University, Pomona, CA, USA.
Recent surges in COVID-19 cases demonstrate the unabated transmissibility of this disease. Despite the ongoing threat of contagion, however, uptake of the COVID-19 vaccines, especially as booster doses, remains suboptimal among eligible adults and children in the United States, as reported by the World Health Organization (WHO). Public attitudes toward these vaccines remain balkanized, with some groups harboring ambivalence or even opposition to receiving inoculation.
View Article and Find Full Text PDFActa Derm Venereol
January 2025
Department of Public Health and Clinical Medicine, Dermatology and Venereology, Umeå University, Umeå, Sweden.
Topical steroid withdrawal (TSW) is described as an adverse reaction to topical glucocorticoids (TGCs). A pathophysiological mechanism has not been identified. There are no diagnostic criteria.
View Article and Find Full Text PDFTalanta
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Engineering Research Center of Technical Textiles, Ministry of Education, College of Materials Science and Engineering, College of Science in Donghua University, State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins (Shanghai Research Institute of Chemical Industry Co., Ltd., Shanghai), Key Laboratory of High Performance Fibers & Products, PR China. Electronic address:
Here, a green poly(ionic liquid)-regulated one-pot method is developed for the synthesis of Au@Pt core-shell nanospheres (PNSs) under mild reaction conditions in water. It is found that the poly(ionic liquid) poly[1-methyl-3-butyl (3-hydroxy) imidazole] chloride (PIL-Cl) is very vital to guide the construction of Au@Pt PNSs. The as-obtained Au@Pt-1 PNSs have perfect spherical outlines, porous core-shell structures and large specific surface area by which they exhibit excellent peroxidase-like activity in acidic media and can be used to develop a simple and reliable colorimetric sensing platform.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!