Unlabelled: In this work, an efficient flexible polymer solar cell was achieved by controlling the UV-ozone treatment time of silver nanowires (Ag NWs) used in the electrode and combined with other modification materials. Through optimizing the time of UV-ozone treatment, it is shown that Ag NWs electrode treated by UV-ozone for 10 s improves the power conversion efficiency (PCE) of the device based on the blend of poly(3-hexylthiophene)(P3HT): [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) from 0.76% to 1.34%. After treatment by UV-ozone, Ag NWs electrodes exhibit several promising characteristics, including high optical transparency, low sheet resistance and superior surface work function. As a consequence, the performance of devices utilizing 10 s UV-ozone-treated Ag NWs with
Pedot: PSS or MoO3 as composite anode showed higher PCEs of 2.77% (2.73%) compared with that for Ag NW electrodes without UV-ozone treatment. In addition, a PCE of 5.97% in flexible polymer solar cells based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl](PBDTTT-EFT):[6, 6]-phenyl C71-butyric acid methyl ester (PC71BM) as a photoactive layer was obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/27/33/335203 | DOI Listing |
Chem Commun (Camb)
January 2025
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China.
Traditional sensors struggle in complex human environments, particularly with humidity and strain detection requiring high sensitivity and robust anti-interference. This work introduces a flexible, miniaturized, low-cost dual-mode sensor that combines a novel resonator structure with a chemically modified conducting polymer, enabling simultaneous strain and humidity detection alongside high anti-interference performance sensitivity and wireless transmission.
View Article and Find Full Text PDFpH is an important physiological parameter within organisms, playing a crucial role in functional activities in cells and tissues. Among various pH sensing methods, optical fiber pH sensors have gained a wide attention due to their unique advantages. However, current silica optical fiber-based pH sensors face some challenges such as weak biocompatibility, low biological safety, complex or unstable surface modification.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry & Physics of Interfaces (CPI), Albert Ludwigs Universität Freiburg, Georges Köhler Allee 103, 79110 Freiburg, Germany.
Glaucoma, a leading cause of blindness, demands innovative and effective treatments that surpass the limitations of current drug and surgical interventions to lower intraocular pressure. This study describes the generation of cell-repellent hydrogel patches, their deposition on the ocular surface, and a photoinduced chemical binding between the patches and the collagens of the eye. The hydrophilic and protein-repellent hydrogel patch is composed of a copolymer made from dimethylacrylamide and a comonomer unit with anthraquinone moieties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
Developing damping materials that are both optically transparent and mechanically robust, while offering broad frequency damping capacity, is a significant challenge─particularly for devices that require protection without compromising visual clarity. Conventional methods often either fail to maintain transparency or involve complex designs that are difficult to implement. Here, we present an ionogel system that integrates a physically cross-linked elastic copolymer network with a viscous ionic liquid.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
Lightweight flexible piezoelectric devices have garnered significant interest over the past few decades due to their applications as energy harvesters and wearable sensors. Among different piezoelectrically active polymers, poly(vinylidene fluoride) and its copolymers have attracted considerable attention for energy conversion due to their high flexibility, thermal stability, and biocompatibility. However, the orientation of polymer chains for self-poling under mild conditions is still a challenging task.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!