High-intensity focused ultrasound (HIFU) can locally ablate biological tissues such as tumors, i.e., induce their rapid heating and coagulative necrosis without causing damage to surrounding healthy structures. It is widely used in clinical practice for minimally invasive treatment of prostate cancer. Nonablative, low-power HIFU was established as a promising tool for triggering the release of chemotherapeutic drugs from temperature-sensitive liposomes (TSLs). In this study, we combine ablative HIFU and thermally triggered chemotherapy to address the lack of safe and effective treatment options for elderly patients with high-risk localized prostate cancer. DU145 prostate cancer cells were exposed to chemotherapy (free and liposomal Sorafenib) and ablative HIFU, alone or in combination. Prior to cell viability assessment by trypan blue exclusion and flow cytometry, the uptake of TSLs by DU145 cells was verified by confocal microscopy and cryogenic scanning electron microscopy (cryo-SEM). The combination of TSLs encapsulating 10 μM Sorafenib and 8.7W HIFU resulted in a viability of less than 10% at 72 h post-treatment, which was significant less than the viability of the cells treated with free Sorafenib (76%), Sorafenib-loaded TSLs (63%), or HIFU alone (44%). This synergy was not observed on cells treated with Sorafenib-loaded nontemperature sensitive liposomes and HIFU. According to cryo-SEM analysis, cells exposed to ablative HIFU exhibited significant mechanical disruption. Water bath immersion experiments also showed an important role of mechanical effects in the synergistic enhancement of TSL-mediated chemotherapy by ablative HIFU. This combination therapy can be an effective strategy for treatment of geriatric prostate cancer patients.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.6b00216DOI Listing

Publication Analysis

Top Keywords

prostate cancer
20
ablative hifu
16
hifu
9
focused ultrasound
8
thermally triggered
8
triggered chemotherapy
8
cells exposed
8
hifu combination
8
cells treated
8
ablative
5

Similar Publications

Prospective validation study of a combined urine and plasma test for predicting high-grade prostate cancer in biopsy naïve men.

Scand J Urol

January 2025

Department of Urology, Odense University Hospital, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

Objective: Early and accurate diagnosis of prostate cancer (PC) is crucial for effective treatment. Diagnosing  clinically insignificant cancers can lead to overdiagnosis and overtreatment, highlighting the importance of accurately selecting patients for further evaluation based on improved risk prediction tools. Novel biomarkers offer promise for enhancing this diagnostic process.

View Article and Find Full Text PDF

AxonFinder: Automated segmentation of tumor innervating neuronal fibers.

Heliyon

January 2025

Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.

Neurosignaling is increasingly recognized as a critical factor in cancer progression, where neuronal innervation of primary tumors contributes to the disease's advancement. This study focuses on segmenting individual axons within the prostate tumor microenvironment, which have been challenging to detect and analyze due to their irregular morphologies. We present a novel deep learning-based approach for the automated segmentation of axons, AxonFinder, leveraging a U-Net model with a ResNet-101 encoder, based on a multiplexed imaging approach.

View Article and Find Full Text PDF

Purpose: This study aims to compare treatment plans created using RapidPlan and PlanIQ for twelve patients with prostate cancer, focusing on dose uniformity, dose reduction to organs at risk (OARs), plan complexity, and dose verification accuracy. The goal is to identify the tool that demonstrates superior performance in achieving uniform target dose distribution and reducing OAR dose, while ensuring accurate dose verification.

Methods: Dose uniformity in the planning target volume, excluding the rectum, and dose reduction in the OARs (the rectum and bladder) were assessed.

View Article and Find Full Text PDF

Medication related osteonecrosis (MRONJ) in the management of CTIBL in breast and prostate cancer patients. Joint report by SIPMO AND SIOMMMS.

J Bone Oncol

February 2025

Unit of Oral Medicine and Dentistry for Frail Patients, Department of Rehabilitation, Fragility, and Continuity of Care, Regional Center for Research and Care of MRONJ, University Hospital Palermo, Palermo, PA, Italy.

Background: Low-doses of bone modifying agents (LD-BMAs) compared to those used to treat bone metastases are used in breast or prostate cancer patients on adjuvant endocrine therapy to prevent Cancer Treatment Induced Bone Loss (CTIBL). Their use is associated with an increased risk of developing Medication-Related Osteonecrosis of the Jaw (MRONJ). However, there is not clarity about strategies aimed to minimize the MRONJ risk in cancer patients at different conditions as low- vs high-doses of BMA.

View Article and Find Full Text PDF

Background: Allergic rhinitis (AR) is a common chronic respiratory disease that can lead to the development of various other conditions. Although genetic risk loci associated with AR have been reported, the connections between these loci and AR comorbidities or other diseases remain unclear.

Methods: This study conducted a phenome-wide association study (PheWAS) using known AR risk loci to explore the impact of known AR risk variants on a broad spectrum of phenotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!