The aim of the study was to evaluate the clinical value of multiple brain parameters on monitoring intracranial pressure (ICP) procedures in the therapy of severe traumatic brain injury (sTBI) utilizing mild hypothermia treatment (MHT) alone or a combination strategy with other therapeutic techniques. A total of 62 patients with sTBI (Glasgow Coma Scale score <8) were treated using mild hypothermia alone or mild hypothermia combined with conventional ICP procedures such as dehydration using mannitol, hyperventilation, and decompressive craniectomy. The multiple brain parameters, which included ICP, cerebral perfusion pressure, transcranial Doppler, brain tissue partial pressure of oxygen, and jugular venous oxygen saturation, were detected and analyzed. All of these measures can control the ICP of sTBI patients to a certain extent, but multiparameters associated with brain environment and functions have to be critically monitored simultaneously because some procedures of reducing ICP can cause side effects for long-term recovery in sTBI patients. The result suggested that multimodality monitoring must be performed during the process of mild hypothermia combined with conventional ICP procedures in order to safely target different clinical methods to specific patients who may benefit from an individual therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4922802PMC
http://dx.doi.org/10.2147/NDT.S106915DOI Listing

Publication Analysis

Top Keywords

monitoring intracranial
8
intracranial pressure
8
severe traumatic
8
traumatic brain
8
brain injury
8
pressure utilizing
4
utilizing novel
4
novel pattern
4
brain
4
pattern brain
4

Similar Publications

The management of multiple intracranial aneurysms presents significant clinical challenges, particularly when complicated by underlying conditions such as cerebral atherosclerosis. This case report highlights the successful treatment of a 66-year-old female diagnosed with three intracranial aneurysms located in the right middle cerebral artery (MCA), pericallosal artery, and M2 segment. The patient also had a history of systemic atherosclerosis and right-sided breast cancer, factors that increased the complexity of surgical intervention.

View Article and Find Full Text PDF

Unravelling Secondary Brain Injury: Insights from a Human-Sized Porcine Model of Acute Subdural Haematoma.

Cells

December 2024

Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany.

Article Synopsis
  • Traumatic brain injury (TBI) is a leading cause of death, complicating the development of effective therapies due to the unique nature of each injury.
  • Clinical questions regarding the benefits of measuring intracranial pressure, cerebral perfusion pressure, and surgical interventions remain largely unanswered.
  • This study focused on acute subdural hematoma in a porcine model to better understand secondary brain injury and the effects of different injury patterns on outcomes, highlighting the need for comprehensive models to improve TBI treatment translation.
View Article and Find Full Text PDF

Background: While serial sampling of glioma tissue is rarely performed prior to recurrence, cerebrospinal fluid (CSF) is an underutilized longitudinal source of candidate glioma biomarkers for understanding therapeutic impacts. However, the impact of key variables to consider in longitudinal CSF samples for monitoring biomarker discovery, including anatomical location and post-surgical changes, remains unknown.

Methods: Aptamer-based proteomics was performed on 147 CSF samples from 74 patients, 71 of whom had grade 2-4 astrocytomas or grade 2-3 oligodendrogliomas.

View Article and Find Full Text PDF

Cerebrospinal fluid (CSF) has emerged as a valuable liquid biopsy source for glioma biomarker discovery and validation. CSF produced within the ventricles circulates through the subarachnoid space, where the composition of glioma-derived analytes is influenced by the proximity and anatomical location of sampling relative to tumor, in addition to underlying tumor biology. The substantial gradients observed between lumbar and intracranial CSF compartments for tumor-derived analytes underscore the importance of sampling site selection.

View Article and Find Full Text PDF

Background: Subarachnoid hemorrhage (SAH) is characterized by intense central inflammation, leading to substantial post-hemorrhagic complications such as vasospasm and delayed cerebral ischemia. Given the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation (taVNS) and its ability to promote brain plasticity, taVNS has emerged as a promising therapeutic option for SAH patients. However, the effects of taVNS on cardiovascular dynamics in critically ill patients, like those with SAH, have not yet been investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!