Background: Gliomas with mutant isocitrate dehydrogenase (IDH) produce high levels of 2-hydroxyglutarate (2HG) that can be quantitatively measured by 3D magnetic resonance spectroscopic imaging (MRSI). Current glioma MRI primarily relies upon fluid-attenuated inversion recovery (FLAIR) hyperintensity for treatment planning, although this lacks specificity for tumor cells. Here, we investigated the relationship between 2HG and FLAIR in mutant IDH glioma patients to determine whether 2HG mapping is valuable for radiotherapy planning.
Methods: Seventeen patients with mutant IDH1 gliomas were imaged by 3 T MRI. A 3D MRSI sequence was employed to specifically image 2HG. FLAIR imaging was performed using standard clinical protocol. Regions of interest (ROIs) were determined for FLAIR and optimally thresholded 2HG hyperintensities. The overlap, displacement, and volumes of 2HG and FLAIR ROIs were calculated.
Results: In 8 of 17 (47%) patients, the 2HG volume was larger than FLAIR volume. Across the entire cohort, the mean volume of 2HG was 35.3 cc (range, 5.3-92.7 cc), while the mean volume of FLAIR was 35.8 cc (range, 6.3-140.8 cc). FLAIR and 2HG ROIs had mean overlap of 0.28 (Dice coefficients range, 0.03-0.57) and mean displacement of 12.2 mm (range, 3.2-23.5 mm) between their centers of mass.
Conclusions: Our results indicate that for a substantial number of patients, the 2HG volumetric assessment of tumor burden is more extensive than FLAIR volume. In addition, there is only partial overlap and asymmetric displacement between the centers of FLAIR and 2HG ROIs. These results may have important implications for radiotherapy planning of IDH mutant glioma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063518 | PMC |
http://dx.doi.org/10.1093/neuonc/now100 | DOI Listing |
Neurology
January 2023
From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.
Background And Objectives: D-2-hydroxyglutarate (2HG) characterizes -mutant gliomas and can be detected and quantified with edited MRS (MEGA-PRESS). In this study, we investigated the clinical, radiologic, and molecular parameters affecting 2HG levels.
Methods: MEGA-PRESS data were acquired in 71 patients with glioma (24 untreated, 47 treated) on a 3 T system.
NMR Biomed
January 2022
A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Radiology, Boston, Massachusetts, USA.
MR spectroscopic imaging (MRSI) noninvasively maps the metabolism of human brains. In particular, the imaging of D-2-hydroxyglutarate (2HG) produced by glioma isocitrate dehydrogenase (IDH) mutations has become a key application in neuro-oncology. However, the performance of full field-of-view MRSI is limited by B spatial nonuniformity and lipid artifacts from tissues surrounding the brain.
View Article and Find Full Text PDFNeuroimage Clin
January 2019
Department of Neurosurgery, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China. Electronic address:
Antiangiogenic therapy is a universal approach to the treatment of malignant gliomas but fails to prolong the overall survival of newly diagnosed or recurrent glioblastoma patients. Imaging biomarkers are quantitative imaging parameters capable of objectively describing biological processes, pathological changes and treatment responses in some situations and have been utilized for outcome predictions of malignant gliomas in anti-angiogenic therapy. Advanced magnetic resonance imaging techniques (including perfusion-weighted imaging and diffusion-weighted imaging), positron emission computed tomography and magnetic resonance spectroscopy are imaging techniques that can be used to acquire imaging biomarkers, including the relative cerebral blood volume (rCBV), K, and the apparent diffusion coefficient (ADC).
View Article and Find Full Text PDFNeuro Oncol
November 2016
Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.J.-K., W.B., B.R.R., O.C.A.); Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (F.L., D.P.C.); Department of Neurosurgery, Charité Medical University, Berlin, Germany (F.L.); High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria (W.B.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (O.R., G.R.G.); Pappas Center of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (E.G., A.S.C., T.T.B.); Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (J.U., H.A.S.).
Background: Gliomas with mutant isocitrate dehydrogenase (IDH) produce high levels of 2-hydroxyglutarate (2HG) that can be quantitatively measured by 3D magnetic resonance spectroscopic imaging (MRSI). Current glioma MRI primarily relies upon fluid-attenuated inversion recovery (FLAIR) hyperintensity for treatment planning, although this lacks specificity for tumor cells. Here, we investigated the relationship between 2HG and FLAIR in mutant IDH glioma patients to determine whether 2HG mapping is valuable for radiotherapy planning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!