Concise Review: Markers for Assessing Human Stem Cell-Derived Implants as β-Cell Replacement in Type 1 Diabetes.

Stem Cells Transl Med

Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium Center for Beta Cell Therapy in Diabetes, University Hospital UZ-Brussels, Brussels, Belgium.

Published: October 2016

Unlabelled: : A depleted β-cell mass causes diabetes complications that cannot be avoided by insulin administration. β-Cell replacement can stop their development when restoring insulin's homeostatic role. This requires a sufficient number and an adequate functional state of the β cells, together defined as "functional β-cell mass." Intraportal implants of human pancreatic islet cells correct hyperglycemia in patients with type 1 diabetes, but this effect is transient and often incomplete. Studies to improve outcome are hindered by shortage in donor pancreases. Human pluripotent stem cells are a candidate source for mass production of grafts for β-cell replacement. Their in vitro differentiation to pancreatic endoderm (stage 4) and to β-cell-containing preparations (stage 7) provides grafts that generate β-cell implants in mice. In vivo markers indicated a better outcome of device-encapsulated stage 4 cells and microencapsulated stage 7 cells as compared with nonencapsulated grafts. Encapsulation also offers the advantage of representative implant retrieval for direct analysis by ex vivo markers. Combination of in vitro, in vivo, and ex vivo markers allows comparison of different stem cell-derived grafts and implants, with each other and with clinical islet cell preparations that serve as reference. Data in mice provide insights into the biology of stem cell-generated β-cell implants, in particular their capacity to establish and sustain a functional β-cell mass. They can thus be indicative for translation of a graft to similar studies in patients, where metabolic benefit will be an additional marker of primordial importance.

Significance: Human stem cell-derived preparations can generate insulin-producing implants in immune-incompetent mice. Steps are undertaken for translation to patients with type 1 diabetes. Their therapeutic significance will depend on their capacity to establish a functional β-cell mass that provides metabolic benefit. This study proposes the combined use of in vitro, in vivo, and ex vivo markers to assess this potential in preclinical models and in clinical studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031173PMC
http://dx.doi.org/10.5966/sctm.2015-0187DOI Listing

Publication Analysis

Top Keywords

vivo markers
16
stem cell-derived
12
β-cell replacement
12
type diabetes
12
β-cell mass
12
β-cell
9
human stem
8
patients type
8
β-cell implants
8
stage cells
8

Similar Publications

Inflammatory bone resorption represents a pathological condition marked by an increase in bone loss, commonly associated with chronic inflammatory conditions such as rheumatoid arthritis and periodontitis. Current therapies primarily focus on anti-inflammatory drugs and bisphosphonates; however, these treatments are limited due to side effects, inadequate efficacy, and unpredictable long-term complications. Kurarinone (KR), a bioactive compound isolated from the traditional Chinese herb Sophora flavescens, exhibits a range of biological activities, including anti-inflammatory, anticancer, and cardiovascular protective effects.

View Article and Find Full Text PDF

Oral Tributyrin Treatment affects Short-Chain Fatty Acid Transport, Mucosal Health, and Microbiome in a Mouse Model of Inflammatory Diarrhea.

J Nutr Biochem

January 2025

Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany. Electronic address:

Butyrate may decrease intestinal inflammation and diarrhea. This study investigates the impact of oral application of sodium butyrate (NaB) and tributyrin (TB) on colonic butyrate concentration, SCFA transporter expression, colonic absorptive function, barrier properties, inflammation, and microbial composition in the colon of slc26a3 mice, a mouse model for inflammatory diarrhea. In vivo fluid absorption and bicarbonate secretory rates were evaluated in the cecum and mid-colon of slc26a3 and slc26a3 mice before and during luminal perfusion of NaB-containing saline and were significantly stimulated in both slc26a3 and slc26a3 colon by NaB.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease (AD) is a leading cause of dementia, characterized by progressive neurodegeneration and cognitive dysfunction. The disease aetiology is closely associated with proteinopathies, mitochondrial abnormalities, and elevated ROS generation, which are some of the primary markers for AD brains.

Objectives: The current research was intended to elucidate the chemical interaction of β-pinene against potential targets and evaluate its neuroprotective potential in ICV-STZ-induced sAD.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases. Although several chemotherapy regimens have been developed over the past decades, few targeted therapies have shown a significant improvement in overall survival, partly due to the identification of PDAC as a single disease.

Methods: Combining metabolomic analysis and immunohistochemistry staining with Oil Red O staining, analysis for the oxygen consumption rate and extracellular acidification rate, we stratified pancreatic cancer cells into two subtypes.

View Article and Find Full Text PDF

Glioprotective Effects of Resveratrol Against Glutamate-Induced Cellular Dysfunction: The Role of Heme Oxygenase 1 Pathway.

Neurotox Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!