Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multibody simulations of human motion require representative models of the anatomical structures. A model that captures the complexity of the foot is still lacking. In the present work, two detailed 3D multibody foot-ankle models generated based on CT scans using a semi-automatic tool are described. The proposed models consists of five rigid segments (talus, calcaneus, midfoot, forefoot and toes), connected by five joints (ankle, subtalar, midtarsal, tarsometatarsal and metatarsophalangeal), one with 15DOF and the other with 8DOF. The calculated kinematics of both models were evaluated using gait trials and compared against literature, both presenting realistic results. An inverse dynamic analysis was performed for the 8DOF model, again presenting feasible dynamic results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10255842.2016.1206533 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!