Biodegradation of the Pyrethroid Pesticide Esfenvalerate by Marine-Derived Fungi.

Mar Biotechnol (NY)

Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina, 13563-120, São Carlos, SP, Brazil.

Published: August 2016

Esfenvalerate biodegradation by marine-derived fungi is reported here. Esfenvalerate (S,S-fenvalerate) and its main metabolites [3-phenoxybenzaldehyde (PBAld), 3-phenoxybenzoic acid (PBAc), 3-phenoxybenzyl alcohol (PBAlc), and 2-(4-chlorophenyl)-3-methylbutyric acid (CLAc)] were quantitatively analyzed by a validated method in triplicate experiments. All the strains (Penicillium raistrickii CBMAI 931, Aspergillus sydowii CBMAI 935, Cladosporium sp. CBMAI 1237, Microsphaeropsis sp. CBMAI 1675, Acremonium sp. CBMAI 1676, Westerdykella sp. CBMAI 1679, and Cladosporium sp. CBMAI 1678) were able to degrade esfenvalerate, however, with different efficiencies. Initially, 100 mg L(-1) esfenvalerate (Sumidan 150SC) was added to each culture in 3 % malt liquid medium. Residual esfenvalerate (64.8-95.2 mg L(-1)) and the concentrations of PBAc (0.5-7.4 mg L(-1)), ClAc (0.1-7.5 mg L(-1)), and PBAlc (0.2 mg L(-1)) were determined after 14 days. In experiments after 7, 14, 21, and 28 days of biodegradation with the three most efficient strains, increasing concentrations of the toxic compounds PBAc (2.7-16.6 mg L(-1), after 28 days) and CLAc (6.6-13.4 mg L(-1), after 28 days) were observed. A biodegradation pathway was proposed, based on HPLC-ToF results. The biodegradation pathway includes PBAld, PBAc, PBAlc, ClAc, 2-hydroxy-2-(3-phenoxyphenyl)acetonitrile, 3-(hydroxyphenoxy)benzoic acid, and methyl 3-phenoxy benzoate. Marine-derived fungi were able to biodegrade esfenvalerate in a commercial formulation and showed their potential for future bioremediation studies in contaminated soils and water bodies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10126-016-9710-zDOI Listing

Publication Analysis

Top Keywords

marine-derived fungi
12
cladosporium cbmai
8
biodegradation pathway
8
esfenvalerate
7
cbmai
7
biodegradation
5
biodegradation pyrethroid
4
pyrethroid pesticide
4
pesticide esfenvalerate
4
esfenvalerate marine-derived
4

Similar Publications

Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the potential of marine natural products as a resource for pharmaceuticals, focusing on a bacterium (S-1) found in shallow sea sediments.
  • Researchers isolated a novel compound (4-(dimethylamino)-1-(2-((4-hydroxybenzoyl)oxy)propyl)pyridin-1-ium) and 15 known cyclic dipeptides from S-1, using NMR and optical rotation for structural analysis.
  • The novel compound demonstrated antibacterial activity with a minimum inhibitory concentration (MIC) of 50 µg/mL, marking it as the first discovered pyridinium derivative and cyclic dipeptides from this marine source.
View Article and Find Full Text PDF

NF-κB-inducing kinase (NIK) plays a pivotal role in regulating both the canonical and non-canonical NF-κB signaling pathways, driving the expression of proteins involved in inflammation, immune responses, and cell survival. Overactivation of NIK is linked to various pathological conditions, including chronic inflammation, autoimmune diseases, metabolic disorders, and cancer progression. As such, NIK represents a compelling target for therapeutic intervention in these diseases.

View Article and Find Full Text PDF

Two marine-derived bacteria, Bacillus paralicheniformis (HR-1) and Bacillus haynesii (HR-5), were isolated from sediments and identified using 16S ribosomal RNA gene amplification and sequencing as well as biochemical analysis. The development of a bacterial consortium (HR-1 & HR-5) from these two bacteria was used to increase the production of the protease enzyme under various conditions, including fermentation media, carbon and nitrogen sources (1% w/v), different pH levels, incubation time, and the obtained enzyme, were detected using SDS-PAGE followed by purification. Bacterial consortium HR-1 & HR-5 exhibited maximum protease production (330.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!