Bone homeostasis is maintained by the synergistic actions of bone-resorbing osteoclasts and bone-forming osteoblasts. Here, we show that the transcriptional coactivator/repressor interferon-related developmental regulator 1 (Ifrd1) is expressed in osteoclast lineages and represents a component of the machinery that regulates bone homeostasis. Ifrd1 expression was transcriptionally regulated in preosteoclasts by receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) through activator protein 1. Global deletion of murine Ifrd1 increased bone formation and decreased bone resorption, leading to a higher bone mass. Deletion of Ifrd1 in osteoclast precursors prevented RANKL-induced bone loss, although no bone loss was observed under normal physiological conditions. RANKL-dependent osteoclastogenesis was impaired in vitro in Ifrd1-deleted bone marrow macrophages (BMMs). Ifrd1 deficiency increased the acetylation of p65 at residues K122 and K123 via the inhibition of histone deacetylase-dependent deacetylation in BMMs. This repressed the NF-κB-dependent transcription of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), an essential regulator of osteoclastogenesis. These findings suggest that an Ifrd1/NF-κB/NFATc1 axis plays a pivotal role in bone remodeling in vivo and represents a therapeutic target for bone diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021375 | PMC |
http://dx.doi.org/10.1128/MCB.01075-15 | DOI Listing |
Sleep Breath
January 2025
Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1 Da Hua Road, Dong Dan, Dongcheng District, Beijing, 100730, PR China.
Purpose: To investigate the relationship between obstructive sleep apnea hypopnea syndrome (OSAHS) severity and fat, bone, and muscle indices.
Methods: This study included 102 patients with OSAHS and retrospectively reviewed their physical examination data. All patients underwent polysomnography, body composition analysis, dual-energy X-ray absorptiometry, computed tomography (CT) and blood test.
Clin Oral Investig
January 2025
Department of Oral and Maxillofacial Surgery, Radboud University Medical Center, Geert Grooteplein 10, Nijmegen, 6525, GA, the Netherlands.
Objectives: To assess the effect of patient positioning and general anesthesia on the condylar position in orthognathic surgery.
Materials And Methods: This prospective study included patients undergoing orthognathic surgery between 2019 and 2020. Four weeks prior to surgery (T0) cone-beam computed tomography (CBCT) scans and intra-oral scans (IOS) were acquired in an upright position.
Tissue Eng Regen Med
January 2025
Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, 172 Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
Background: Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods: Thirty patients (17 male, 13 female; mean age 55.
J Orthop Traumatol
January 2025
Department of Orthopaedic Trauma, Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, 710054, Shaanxi, China.
Background: Clavicle fractures associated with ipsilateral coracoid process fractures are very rare, with limited literature reporting only a few cases. This study reports on 27 patients with ipsilateral concomitant fractures of the clavicle and coracoid process who were followed for more than 12 months.
Material And Methods: This retrospective study reviewed the charts of skeletally mature patients with traumatic ipsilateral clavicle and coracoid process fractures treated at the authors' institution.
Pediatr Radiol
January 2025
Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Cerrahpasa Medical Faculty, 34098, Cerrahpasa, Istanbul, Turkey.
Background: Heterozygous TRPV4 mutations cause a group of skeletal dysplasias characterized by short stature, short trunk, and skeletal deformities.
Objective: The aim of this study is to compare the natural history of clinical and radiologic features of patients with different TRPV4-related skeletal dysplasias.
Materials And Methods: Thirteen patients with a mutation in TRPV4 were included in the study, and 11 were followed for a median of 6.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!