Water is the most abundant liquid on earth and also the substance with the largest number of anomalies in its properties. It is a prerequisite for life and as such a most important subject of current research in chemical physics and physical chemistry. In spite of its simplicity as a liquid, it has an enormously rich phase diagram where different types of ices, amorphous phases, and anomalies disclose a path that points to unique thermodynamics of its supercooled liquid state that still hides many unraveled secrets. In this review we describe the behavior of water in the regime from ambient conditions to the deeply supercooled region. The review describes simulations and experiments on this anomalous liquid. Several scenarios have been proposed to explain the anomalous properties that become strongly enhanced in the supercooled region. Among those, the second critical-point scenario has been investigated extensively, and at present most experimental evidence point to this scenario. Starting from very low temperatures, a coexistence line between a high-density amorphous phase and a low-density amorphous phase would continue in a coexistence line between a high-density and a low-density liquid phase terminating in a liquid-liquid critical point, LLCP. On approaching this LLCP from the one-phase region, a crossover in thermodynamics and dynamics can be found. This is discussed based on a picture of a temperature-dependent balance between a high-density liquid and a low-density liquid favored by, respectively, entropy and enthalpy, leading to a consistent picture of the thermodynamics of bulk water. Ice nucleation is also discussed, since this is what severely impedes experimental investigation of the vicinity of the proposed LLCP. Experimental investigation of stretched water, i.e., water at negative pressure, gives access to a different regime of the complex water diagram. Different ways to inhibit crystallization through confinement and aqueous solutions are discussed through results from experiments and simulations using the most sophisticated and advanced techniques. These findings represent tiles of a global picture that still needs to be completed. Some of the possible experimental lines of research that are essential to complete this picture are explored.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5424717 | PMC |
http://dx.doi.org/10.1021/acs.chemrev.5b00750 | DOI Listing |
Alzheimers Dement
December 2024
University of Washington, Seattle, WA, USA.
Background: The BRAIN Initiative has stimulated development of novel single cell and spatial molecular approaches to understand human brain structure and function. However, traditional methods for human brain specimen collection, including retrospective archival tissues, have not been optimized for these latest methods. A modernized approach that optimizes tissue quality, anatomical precision, and comprehensive, quantitative neuropathological assessments is needed to maximize the impact of the tremendous investment and remarkable technological advances in human neuroscience research.
View Article and Find Full Text PDFHistia rhodope (Cramer) (Lepidoptera: Zygaenidae) is one of the most destructive defoliating pests of the landscape tree Bischofia polycarpa (Levl.) S in China and other Southeast Asian regions, posing a critical threat to urban landscapes and their ecological benefits. This pest has shown a trend of northward range shift in recent years in China, making it urgent to understand its potential distribution.
View Article and Find Full Text PDFPhys Rev E
November 2024
INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina.
In this work, we shall study the role of threefold and fivefold coordination defects in the structure and dynamics of the hydrogen bond network of liquid water, with special emphasis on the glassy regime. A significant defect clusterization propensity will be made evident, with a prevalence of mixed pairs, that is, threefold- and fivefold-coordinated defects being first neighbors of each other. This structural analysis will enable us to determine the existence of defective and nondefective regions compatible with the high local density and low local density molecular states of liquid water, respectively.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
While the glass transition is easy to identify macroscopically, the underlying atomic mechanisms which facilitate the transition from amorphous solid to fluid are still poorly understood. We conduct classical molecular dynamics simulations on a variety of inorganic glasses in order to identify these mechanisms. While also modelling larger systems, we find that the essential qualities which constitute a glass and its transition to a liquid are present even in systems containing only a few hundred atoms.
View Article and Find Full Text PDFJ Law Med Ethics
December 2024
LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA, USA.
Advanced biopreservation technologies using subzero approaches such as supercooling, partial freezing, and vitrification with reanimating techniques including nanoparticle infusion and laser rewarming are rapidly emerging as technologies with potential to radically disrupt biomedicine, research, aquaculture, and conservation. These technologies could pause biological time and facilitate large-scale banking of biomedical products including organs, tissues, and cell therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!