AMP-activated protein kinase (AMPK) is a highly conserved and multi-functional protein kinase that plays important roles in both intracellular energy balance and cellular stress response. In the present study, molecular characterization, tissue distribution and gene expression levels of the AMPK α1 and α2 genes from turbot (Scophthalmus maximus) under salinity stress are described. The complete coding regions of the AMPK α1 and α2 genes were isolated from turbot through degenerate primers in combination with RACE using muscle cDNA. The complete coding regions of AMPK α1 (1722 bp) and α2 (1674 bp) encoded 573 and 557 amino acids peptides, respectively. Multiple alignments, structural analysis and phylogenetic tree construction indicated that S. maximus AMPK α1 and α2 shared a high amino acid identity with other species, especially fish. AMPK α1 and α2 genes could be detected in all tested tissues, indicating that they are constitutively expressed. Salinity challenges significantly altered the gene expression levels of AMPK α1 and α2 mRNA in a salinity- and time-dependent manners in S. maximus gill tissues, suggesting that AMPK α1 and α2 played important roles in mediating the salinity stress in S. maximus. The expression levels of AMPK α1 and α2 mRNA were a positive correlation with gill Na, K-ATPase activities. These findings will aid our understanding of the molecular mechanism of juvenile turbot in response to environmental salinity changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10695-016-0243-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!