Selective induction of apoptosis in cancer cells barring the normal cells is considered as an effective strategy to combat cancer. In the present study, a series of twenty-two (22) synthetic 3,3'-(aryl/alkyl-methylene)bis(2-hydroxynaphthalene-1,4-dione) bis-lawsone derivatives were assayed for their pro-apoptotic activity in six different cell lines (five cancerous and one normal) using MTT assay. Out of these 22 test compounds, 1j was found to be the most effective in inducing apoptosis in human glioma cells (CCF-4) among the different cell lines used in the study. The activity of this compound, 1j, was then compared to a popular anticancer drug, cisplatin, having limited usage because of its nephrotoxic nature. In this study, 1j derivative showed much less toxicity to the normal kidney cells compared to cisplatin, thus indicating the superiority of 1j as a possible anticancer agent. This compound was observed to induce apoptosis in the glioma cells by inducing the caspase dependent apoptotic pathways via ROS and downregulating the PI3K/AKT/mTOR pathway. Estimation of different oxidative stress markers also confirms the induction of oxidative stress in 1j exposed cancer cells. The toxicity of 1j compound toward cancer cells was confirmed further by different flow cytometrical analyses to estimate the mitochondrial membrane potential and cell cycle. The sensitivity of malignant cells to apoptosis, provoked by this synthetic derivative in vitro, deserves further studies in suitable in vivo models. These studies not only identified a novel anticancer drug candidate but also help to understand the metabolism of ROS and its application in cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933382 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158694 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!