Prolonged Treatment with Propofol Transiently Impairs Proliferation but Not Survival of Rat Neural Progenitor Cells In Vitro.

PLoS One

Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.

Published: July 2017

Neurocognitive dysfunction is common in survivors of intensive care. Prolonged sedation has been implicated but the mechanisms are unclear. Neurogenesis continues into adulthood and is implicated in learning. The neural progenitor cells (NPC) that drive neurogenesis have receptors for the major classes of sedatives used clinically, suggesting that interruption of neurogenesis may partly contribute to cognitive decline in ICU survivors. Using an in vitro system, we tested the hypothesis that prolonged exposure to propofol concentration- and duration-dependently kills or markedly decreases the proliferation of NPCs. NPCs isolated from embryonic day 14 Sprague-Dawley rat pups were exposed to 0, 2.5, or 5.0 μg/mL of propofol, concentrations consistent with deep clinical anesthesia, for either 4 or 24 hours. Cells were assayed for cell death and proliferation either immediately following propofol exposure or 24 hours later. NPC death and apoptosis were measured by propidium iodine staining and cleaved caspase-3 immunocytochemistry, respectively, while proliferation was measured by EdU incorporation. Staurosporine (1μM for 6h) was used as a positive control for cell death. Cells were analyzed with unbiased high-throughput immunocytochemistry. There was no cell death at either concentration of propofol or duration of exposure. Neither concentration of propofol impaired NPC proliferation when exposure lasted 4 h, but when exposure lasted 24 h, propofol had an anti-proliferative effect at both concentrations (P < 0.0001, propofol vs. control). However, this effect was transient; proliferation returned to baseline 24 h after discontinuation of propofol (P = 0.37, propofol vs. control). The transient but reversible suppression of NPC proliferation, absence of cytotoxicity, and negligible effect on the neural stem cell pool pool suggest that propofol, even in concentrations used for clinical anesthesia, has limited impact on neural progenitor cell biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933334PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158058PLOS

Publication Analysis

Top Keywords

neural progenitor
12
cell death
12
propofol
11
progenitor cells
8
propofol concentrations
8
clinical anesthesia
8
concentration propofol
8
npc proliferation
8
exposure lasted
8
propofol control
8

Similar Publications

Progress of human brain in vitro models stands as a keystone in neurological and psychiatric research, addressing the limitations posed by species-specific differences in animal models. The generation of human neurons from induced pluripotent stem cells (iPSCs) using transcription factor reprogramming protocols has been shown to reduce heterogeneity and improve consistency across different stem cell lines. Despite notable advancements, the current protocols still exhibit several shortcomings.

View Article and Find Full Text PDF

This study aimed to investigate the genetic association between glioblastoma (GBM) and unsupervised deep learning-derived imaging phenotypes (UDIPs). We employed a combination of genome-wide association study (GWAS) data, single-nucleus RNA sequencing (snRNA-seq), and scPagwas (pathway-based polygenic regression framework) methods to explore the genetic links between UDIPs and GBM. Two-sample Mendelian randomization analyses were conducted to identify causal relationships between UDIPs and GBM.

View Article and Find Full Text PDF

Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs).

View Article and Find Full Text PDF

Integer Topological Defects Reveal Antisymmetric Forces in Active Nematics.

Phys Rev Lett

December 2024

Shanghai Jiao Tong University, School of Physics and Astronomy, Institute of Natural Sciences, Shanghai 200240, China.

Article Synopsis
  • Researchers categorize cell layers as either contractile or extensile active nematics, but recent experiments with neural progenitor cells and +1 topological defects challenge this classification.
  • The study involves a particle-level model and a continuum theory, both of which reveal that cells accumulate at the core of +1 defects, aligning with the main experimental outcome.
  • The cell accumulation is driven by two overlooked antisymmetric active forces, and the findings have implications for understanding other active nematics experiments and existing theories.
View Article and Find Full Text PDF

Quantitative Analysis of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Stabilization in a Neural Model of Alzheimer's Disease (AD).

J Vis Exp

January 2025

Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School;

A method to quantitate the stabilization of Mitochondria-Associated endoplasmic reticulum Membranes (MAMs) in a 3-dimensional (3D) neural model of Alzheimer's disease (AD) is presented here. To begin, fresh human neuro progenitor ReN cells expressing β-amyloid precursor protein (APP) containing familial Alzheimer's disease (FAD) or naïve ReN cells are grown in thin (1:100) Matrigel-coated tissue culture plates. After the cells reach confluency, these are electroporated with expression plasmids encoding red fluorescence protein (RFP)-conjugated mitochondria-binding sequence of AKAP1(34-63) (Mito-RFP) that detects mitochondria or constitutive MAM stabilizers MAM 1X or MAM 9X that stabilize tight (6 nm ± 1 nm gap width) or loose (24 nm ± 3 nm gap width) MAMs, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!