Aim: In this work the effect of infrared (IR) radiation, at temperatures between 25 and 30°C, on the formation of free radicals (FRs) in the skin is studied. Additionally, the influence of IR radiation at high temperatures in the degradation of skin collagen is evaluated. In both experiments the protective effect against IR radiation of phospholipid nanostructures (bicosomes) incorporating β-carotene (Bcb) is also evaluated.

Methods: The formation of FRs in skin under IR exposure was measured near physiological temperatures (25-30°C) using 5,5-dimethyl-1-pyrroline-N-oxide spin trap and electron paramagnetic resonance (EPR) spectroscopy. The study of the collagen structure was performed by small-angle X-ray scattering using synchrotron radiation.

Results: EPR results showed an increase in the hydroxyl radical in the irradiated skin compared to the native skin. The skin collagen was degraded by IR exposure at high temperatures of approximately 65°C. The treatment with Bcb reduced the formation of FRs and kept the structure of collagen.

Conclusions: The formation of FRs by IR radiation does not depend on the increase of skin temperature. The decrease of FRs and the preservation of collagen fibers in the skin treated with Bcb indicate the potential of this lipid system to protect skin under IR exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000447015DOI Listing

Publication Analysis

Top Keywords

formation frs
12
skin
10
infrared radiation
8
bicosomes incorporating
8
incorporating β-carotene
8
frs skin
8
high temperatures
8
skin collagen
8
skin exposure
8
radiation
5

Similar Publications

Rheumatoid arthritis (RA), a form of autoimmune inflammation, is marked by enduring synovial inflammation and the subsequent impairment of joint function. Despite the availability of conventional treatments, they are often marred by significant side effects and the associated high costs. Plant-derived extracellular vesicles (PEVs) offer a compelling alternative, owing to their abundant availability, affordability, low immunogenicity, high biocompatibility, and feasibility for large-scale production.

View Article and Find Full Text PDF

Fungal spores are abundant in the environment and a major cause of asthma. Originally characterised as a type 2 inflammatory disease, allergic airway inflammation that underpins asthma can also involve type 17 inflammation, which can exacerbate disease causing failure of treatments tailored to inhibit type 2 factors. However, the mechanisms that determine the host response to fungi, which can trigger both type 2 and type 17 inflammation in allergic airway disease, remain unclear.

View Article and Find Full Text PDF

Comprehensive analysis of small RNA, transcriptome, and degradome sequencing: Mapping the miRNA-gene regulatory network for the development of sweet potato tuber roots.

Plant Physiol Biochem

January 2025

Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China. Electronic address:

As an important starch crop, sweet potato has significant practical importance for maintaining food security worldwide. This study identified differential expressed genes associated with the expansion of tuberous roots by comparing the transcriptome across tuberous roots at the initial period (initiated tuberous roots (ITRs), rapid expansion period (tuberous roots (TRs), fibrous roots (FRs) at the seedling stage, and fibrous roots at the adult stage (unexpanded FRs (UFRs)). sRNA-seq and degradome analyses were performed to reveal the role of miRNAs in tuberous root development in sweet potato.

View Article and Find Full Text PDF

Background: Non-functional adrenal incidentaloma (NFAI) is associated with an increased risk of adverse cardiometabolic outcome. Identifying predictors of atherosclerotic cardiovascular disease (ASCVD) may enable more appropriate management strategies in patients with NFAI. We aimed to investigate the body composition parameters and ASCVD risk in patients with NFAI.

View Article and Find Full Text PDF

Effect of various physical and chemical stress conditions on the infectivity and survival of Heterorhabditis indica and Steinernema feltiae: Relationship with lipid oxidative stress.

Pestic Biochem Physiol

January 2025

Laboratory of Nematology, Institute of Agri-food, Animal and Environmental Sciences (ICA3), Universidad de O'Higgins, Campus Colchagua, Chile; Centre of System Biology for Crop Protection (BIOSAV-UOH), Universidad de O'Higgins, Chile. Electronic address:

Entomopathogenic nematodes (EPNs) of the genera Heterorhabditis and Steinernema represent an alternative for the biological control of insects. The limited half-life of EPNs is still one of the most concerning issues in their commercialization. Lipid peroxidation (LPO) caused by reactive oxygen species (ROS) may be one of the most important causes of loss of infectivity and survival of EPNs when exposed to various physicochemical stress conditions (temperature, pH, hypoxia and osmotic pressure).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!