Comparative Epigenomic Profiling of the DNA Methylome in Mouse and Zebrafish Uncovers High Interspecies Divergence.

Front Genet

Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New YorkNY, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New YorkNY, USA; Liver Cancer Program/Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New YorkNY, USA; Program in Biology, New York University Abu DhabiAbu Dhabi, UAE.

Published: July 2016

The DNA methylation landscape is dynamically patterned during development and distinct methylation patterns distinguish healthy from diseased cells. However, whether tissue-specific methylation patterns are conserved across species is not known. We used comparative methylome analysis of base-resolution DNA methylation profiles from the liver and brain of mouse and zebrafish generated by reduced representation bisulfite sequencing to identify the conserved and divergent aspects of the methylome in these commonly used vertebrate model organisms. On average, 24% of CpGs are methylated in mouse livers and the pattern of methylation was highly concordant among four male mice from two different strains. The same level of methylation (24.2%) was identified in mouse brain. In striking contrast, zebrafish had 63 and 70% of CpG methylation in the liver and brain, respectively. This is attributed, in part, to the higher percentage of the zebrafish genome occupied by transposable elements (52% vs. 45% in mice). Thus, the species identity was more significant in determining methylome patterning than was the similarity in organ function. Conserved features of the methylome across tissues and species was the exclusion of methylation from promoters and from CpG islands near transcription start sites, and the clustering of methylated CpGs in gene bodies and intragenic regions. These data suggest that DNA methylation reflects species-specific genome structure, and supports the notion that DNA methylation in non-promoter regions may contribute to genome evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911366PMC
http://dx.doi.org/10.3389/fgene.2016.00110DOI Listing

Publication Analysis

Top Keywords

dna methylation
16
methylation
10
mouse zebrafish
8
methylation patterns
8
liver brain
8
dna
5
methylome
5
comparative epigenomic
4
epigenomic profiling
4
profiling dna
4

Similar Publications

The diagnostic landscape of brain tumors integrates comprehensive molecular markers alongside traditional histopathological evaluation. DNA methylation and next-generation sequencing (NGS) have become a cornerstone in central nervous system (CNS) tumor classification. A limiting requirement for NGS and methylation profiling is sufficient DNA quality and quantity, which restrict its feasibility.

View Article and Find Full Text PDF

Background: The risk of developing advanced neoplasia (AN; colorectal cancer and/or high-grade dysplasia) in ulcerative colitis (UC) patients with a low-grade dysplasia (LGD) lesion is variable and difficult to predict. This is a major challenge for effective clinical management.

Objective: We aimed to provide accurate AN risk stratification in UC patients with LGD.

View Article and Find Full Text PDF

Rapid, sensitive, and specific molecular detection methods are crucial for diagnosing, treating and prognosing cancer patients. With advancements in biotechnology, molecular diagnostic technology has garnered significant attention as a fast and accurate method for cancer diagnosis. CRISPR-Cas12a (Cpf1), an important CRISPR-Cas family member, has revolutionized the field of molecular diagnosis since its introduction.

View Article and Find Full Text PDF

Pelvic floor disorder (PFD) is a common gynecological disorder, and with the ageing of the population, PFD has a serious impact on the physical and mental health of patients and their quality of life. The most prominent of these are pelvic organ prolapse (POP) and urinary incontinence (UI), about which the etiology is still unclear, and it is urgent to explore their pathogenesis. Advances in genetics and epigenetics have provided new insights into the pathophysiology of PFD.

View Article and Find Full Text PDF

Grainyhead-like protein 3 homolog (GRHL3) has been identified as a top transcription factor associated with keratinization in lung squamous cell carcinoma (LUSC). We designed this study to elucidate the function of GRHL3 in radioresistance in LUSC and the mechanism involved. Transcriptome differences between radioresistant and parental cells were analyzed to identify the hub transcription factor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!