Arabidopsis thaliana has been an excellent model system for molecular genetic approaches to development and physiology. More recently, the potential of studying various accessions collected from diverse habitats has been started to exploit. Col-0 has been the best-studied accession but we now know that several traits show significant divergences among them. In this work, we focused in the root that has become a key system for development. We studied root architecture and growth dynamics of 12 Arabidopsis accessions. Our data reveal a wide variability in root architecture and root length among accessions. We also found variability in the root apical meristem (RAM), explained mainly by cell size at the RAM transition domain and possibly by peculiar forms of organization at the stem cell niche in some accessions. Contrary to Col-0 reports, in some accessions the RAM size not always explains the variations in the root length; indicating that elongated cell size could be more relevant in the determination of root length than the RAM size itself. This study contributes to investigations dealing with understanding the molecular and cellular basis of phenotypic variation, the role of plasticity on adaptation, and the developmental mechanisms that may restrict phenotypic variation in response to contrasting environmental conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910468 | PMC |
http://dx.doi.org/10.3389/fpls.2016.00858 | DOI Listing |
Front Microbiol
January 2025
National Bureau of Agriculturally Important Microorganism, Mau, India.
Non-halophytic plants are highly susceptible to salt stress, but numerous studies have shown that halo-tolerant microorganisms can alleviate this stress by producing phytohormones and enhancing nutrient availability. This study aimed to identify and evaluate native microbial communities from salt-affected regions to boost black gram () resilience against salinity, while improving plant growth, nitrogen uptake, and nodulation in saline environments. Six soil samples were collected from a salt-affected region in eastern Uttar Pradesh, revealing high electrical conductivity (EC) and pH, along with low nutrient availability.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan.
Common wheat is allohexaploid, where it is difficult to obtain homoeolog-distinguished transcriptome data. Lasy-Seq, a type of 3' RNA-seq, is a technology efficient at obtaining homoeolog-distinguished transcriptomes. Here we applied Lasy-Seq to obtain transcriptome data from the seedlings, second leaves, and root tips of 25 common wheat lines mainly from East Asia.
View Article and Find Full Text PDFTissue Cell
January 2025
School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea. Electronic address:
Numerous naturally occurring biological structures have inspired the development of innovative biomaterials for a wide range of applications. Notably, the nanotopographical architectures found in natural materials have been leveraged in biomaterial design to enhance cell adhesion and proliferation and improve tissue regeneration for biomedical applications. In this study, we fabricated three-dimensional (3D) chitin-glucan micro/nanofibrous fungal-based spheres coated with collagen (type I) to mimic the native extracellular matrix (ECM) microenvironment.
View Article and Find Full Text PDFGenetica
January 2025
School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China.
Gene duplications provide evolutionary potentials for generating novel functions. Chimonanthus praecox and C. salicifolius are closely related species from Calycantaceae, Magnoliids.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
Root system architecture (RSA) plays an important role in plant adaptation to drought stress. However, the genetic basis of RSA in sorghum has not been adequately elucidated. This study aimed to investigate the genetic bases of RSA traits through genome-wide association studies (GWAS) and determine genomic prediction (GP) accuracy in sorghum landraces at the seedling stage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!