Chrysolaena obovata stores inulin in the rhizophores, associated with drought tolerance. While crop plants are widely studied concerning the interactive effects of high [CO2] and drought, few studies reported these effects in native species. Here, we evaluated the combined effects of these factors on water status and fructan metabolism in C. obovata, a native Cerrado species. Two lots of plants were kept at 380 and 760 ppm CO2 in open-top chambers. In each, [CO2] plants were divided into four groups and cultivated under different water availability: irrigation with 100 (control), 75 (low), 50 (medium), and 25% (severe drought) of the water evapotranspirated in the last 48 h. In each, water treatment plants were collected at 0, 9, 18, and 27 days. On day 27, all plants were re-watered to field capacity and, after 5 days, a new sampling was made. Water restriction caused a decrease in plant moisture, photosynthesis, and in enzymes of fructan metabolism. These changes were generally more pronounced in 25% plants under ambient [CO2]. In the later, increases in the proportion of hexoses and consequent modification of the fructan chain sizes were more marked than under high [CO2]. The results indicate that under elevated [CO2], the negative effects of water restriction on physiological processes were minimized, including the maintenance of rhizophore water potential, increase in water use efficiency, maintenance of photosynthesis and fructan reserves for a longer period, conditions that shall favor the conservation of this species in the predicted climate change scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905961PMC
http://dx.doi.org/10.3389/fpls.2016.00810DOI Listing

Publication Analysis

Top Keywords

cerrado species
8
chrysolaena obovata
8
high [co2]
8
water
8
fructan metabolism
8
water restriction
8
plants
6
[co2]
5
elevated co2
4
co2 atmosphere
4

Similar Publications

Spatial Characterization of Woody Species Diversity in Tropical Savannas Using GEDI and Optical Data.

Sensors (Basel)

January 2025

Forest Biometrics and Remote Sensing Laboratory (Silva Lab), School of Forest, Fisheries, and Geomatics Sciences, University of Florida, P.O. Box 110410, Gainesville, FL 32611, USA.

Developing the capacity to monitor species diversity worldwide is of great importance in halting biodiversity loss. To this end, remote sensing plays a unique role. In this study, we evaluate the potential of Global Ecosystem Dynamics Investigation (GEDI) data, combined with conventional satellite optical imagery and climate reanalysis data, to predict in situ alpha diversity (Species richness, Simpson index, and Shannon index) among tree species.

View Article and Find Full Text PDF

Bat ectoparasites (Diptera: Streblidae and Acari: Spinturnicidae) from an urban area in the Amazon-Cerrado transition.

Vet Parasitol Reg Stud Reports

January 2025

Secretaria Municipal de Saúde de Cuiabá, Diretoria de Vigilância em Saúde, Unidade de Vigilância de Zoonoses, Brazil.

Parasites significantly influence ecosystems by controlling host populations and spreading diseases, thereby impacting ecological balances. In the Neotropics, hematophagous bat flies and mites are common ectoparasites of bats. The state of Mato Grosso, Brazil, hosts a diverse bat fauna across its Amazon Forest, Cerrado, and Pantanal habitats.

View Article and Find Full Text PDF

Unveiling remarkable bacterial diversity trapped by cowpea (Vigna unguiculata) nodules inoculated with soils from indigenous lands in Central-Western Brazil.

Braz J Microbiol

January 2025

Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, PR-445, Km 380, C.P. 10.011, CEP 86.057-970, Londrina, Paraná, Brazil.

Cowpea (Vigna unguiculata) is recognized as a promiscuous legume in its symbiotic relationships with rhizobia, capable of forming associations with a wide range of bacterial species. Our study focused on assessing the diversity of bacterial strains present in cowpea nodules when inoculated with soils from six indigenous lands of Mato Grosso do Sul state, Central-Western Brazil, comprising the Cerrado and the Pantanal biomes, which are known for their rich diversity. The DNA profiles (BOX-PCR) of 89 strains indicated great genetic diversity, with 20 groups and 23 strains occupying single positions, and all strains grouped at a final similarity level of only 25%.

View Article and Find Full Text PDF

Endophytic species from Brazil.

Fungal Syst Evol

December 2024

Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Centro de Biociências, Cidade Universitária, CEP: 50670-901, Recife, PE, Brazil.

species can inhabit various hosts with different lifestyles and live as endophytes, pathogens, and saprobes. Our study analysed 180 endophytic isolates from sp. in the Atlantic Forest, in the Brazilian savanna (Cerrado), and in the Caatinga forest and Cerrado in Brazil.

View Article and Find Full Text PDF

We assembled and annotated the complete mitochondrial genomes of (hoary fox), (bush dog), (white-lipped peccary), and (Brazilian free-tailed bat). The mitogenomes exhibited typical vertebrate structures, containing 13 protein-coding genes, 22 tRNA genes, 2 ribosomal RNA genes, and a D-loop region. Phylogenetic reconstruction using the 13 protein-coding genes revealed robust relationships among species within Carnivora, Chiroptera, and Artiodactyla, corroborating previous studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!