A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Learning from magnetotactic bacteria: A review on the synthesis of biomimetic nanoparticles mediated by magnetosome-associated proteins. | LitMetric

Learning from magnetotactic bacteria: A review on the synthesis of biomimetic nanoparticles mediated by magnetosome-associated proteins.

J Struct Biol

Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, s/n, 18071 Granada, Spain. Electronic address:

Published: November 2016

Much interest has gained the biomineralization process carried out by magnetotactic bacteria. These bacteria are ubiquitous in natural environments and share the ability to passively align along the magnetic field lines and actively swim along them. This ability is due to their magnetosome chain, each magnetosome consisting on a magnetic crystal enveloped by a lipid bilayer membrane to which very unique proteins are associated. Magnetotactic bacteria exquisitely control magnetosome formation, making the magnetosomes the ideal magnetic nanoparticle of potential use in many technological applications. The difficulty to scale up magnetosome production has triggered the research on the in vitro production of biomimetic (magnetosome-like) magnetite nanoparticles. In this context, magnetosome proteins are being used to mediate such in vitro magnetite precipitation experiments. The present work reviews the knowledgement on the magnetosome proteins thought to have a role on the in vivo formation of magnetite crystals in the magnetosome, and the recombinant magnetosome proteins used in vitro to form biomimetic magnetite. It also summarizes the data provided in the literature on the biomimetic magnetite nanoparticles obtained from those in vitro experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsb.2016.06.026DOI Listing

Publication Analysis

Top Keywords

magnetotactic bacteria
12
magnetosome proteins
12
magnetosome
8
magnetite nanoparticles
8
biomimetic magnetite
8
proteins
5
magnetite
5
learning magnetotactic
4
bacteria
4
bacteria review
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!