Niemann-Pick type C disease (NP-C) is a progressive lysosomal lipid storage disease caused by mutations in the NPC1 and NPC2 genes. NPC1 is essential for transporting cholesterol and other lipids out of lysosomes, but little is known about the mechanisms that control its cellular abundance and localization. Here we show that a reduction of TMEM97, a cholesterol-responsive NPC1-binding protein, increases NPC1 levels in cells through a post-transcriptional mechanism. Reducing TMEM97 through RNA-interference reduces lysosomal lipid storage and restores cholesterol trafficking to the endoplasmic reticulum in cell models of NP-C. In TMEM97 knockdown cells, NPC1 levels can be reinstated with wild type TMEM97, but not TMEM97 missing an ER-retention signal suggesting that TMEM97 contributes to controlling the availability of NPC1 to the cell. Importantly, knockdown of TMEM97 also increases levels of residual NPC1 in NPC1-mutant patient fibroblasts and reduces cholesterol storage in an NPC1-dependent manner. Our findings propose TMEM97 inhibition as a novel strategy to increase residual NPC1 levels in cells and a potential therapeutic target for NP-C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5179952 | PMC |
http://dx.doi.org/10.1093/hmg/ddw204 | DOI Listing |
J Matern Fetal Neonatal Med
December 2025
Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China.
Objective: The objective of this study was to identify a novel gene and its potential mechanisms associated with susceptibility to gestational diabetes mellitus (GDM) through an integrative approach.
Methods: We analyzed data from genome-wide association studies (GWAS) of GDM in the FinnGen R11 dataset (16,802 GDM cases and 237,816 controls) and Genotype Tissue Expression v8 expression quantitative trait locus data. We used summary-data-based Mendelian randomization to determine associations between transcript levels and phenotypes, transcriptome-wide association studies to provide insights into gene-trait associations, multi-marker analysis of genomic annotation to perform gene-based analysis, genome-wide complex trait analysis-multivariate set-based association test-combo to determine gene prioritization, and polygenic priority scores to prioritize the causal genes to screen candidate genes.
FEBS Open Bio
December 2024
Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
Hepatocellular carcinoma remains a significant threat to human health. Recent studies have found that the intake of cellular cholesterol contributes to the development and progression of hepatocellular carcinoma, although the exact mechanisms remain unclear. Our analysis of transcriptomic and proteomic databases has identified increased mRNA and protein expression levels of NPC1, a cholesterol intracellular transporter protein, in hepatocellular carcinoma tissues.
View Article and Find Full Text PDFAm J Med Genet A
December 2024
Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA.
Niemann-Pick disease, type C1 (NPC1) is an ultra rare, autosomal recessive disorder characterized by impaired intracellular cholesterol trafficking. This study assessed neuron-specific enolase (NSE) as a biomarker for disease status and treatment response in individuals with NPC1. We also evaluated the concordance between serum and cerebrospinal fluid (CSF) NSE measurements.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA, I. P.), Rua Alexandre Herculano 321, 4000-055 Porto, Portugal.
Front Genet
November 2024
College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
Background: Cis-regulatory elements (CREs) are regions of DNA that regulate the expression of nearby genes. Changes in these elements can lead to phenotypic variations and adaptations in different populations. However, the regulatory dynamics underlying the local adaptation of traits remain poorly understood in Chinese and Western pigs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!