Derepression of DUX4 in skeletal muscle has emerged as a likely cause of pathology in facioscapulohumeral muscular dystrophy (FSHD). Here we report on the use of antisense phosphorodiamidate morpholino oligonucleotides to suppress DUX4 expression and function in FSHD myotubes and xenografts. The most effective was phosphorodiamidate morpholino oligonucleotide FM10, which targets the polyadenylation signal of DUX4. FM10 had no significant cell toxicity, and RNA-seq analyses of FSHD and control myotubes revealed that FM10 down-regulated many transcriptional targets of DUX4, without overt off-target effects. Electroporation of FM10 into FSHD patient muscle xenografts in mice also down-regulated DUX4 and DUX4 targets. These findings demonstrate the potential of antisense phosphorodiamidate morpholino oligonucleotides as an FSHD therapeutic option.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5023379 | PMC |
http://dx.doi.org/10.1038/mt.2016.111 | DOI Listing |
The international symposium ASOBIOTICS 2024 brought together scientists across disciplines to discuss the challenges of advancing antibacterial antisense oligomers (ASOs) from basic research to clinical application. Hosted by the Helmholtz Institute for RNA-based Infection Research (HIRI) in Wurzburg, Germany, on September 12-13th, 2024, the event featured presentations covering major milestones and current challenges of this antimicrobial technology and its applications against pathogens, commensals, and bacterial viruses. General design principles and modification of ASOs based on peptide nucleic acid (PNA) or phosphorodiamidate-morpholino-oligomer (PMO) chemistry, promising cellular RNA targets, new delivery technologies, as well as putative resistance mechanisms were discussed.
View Article and Find Full Text PDFCell Rep Med
January 2025
Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan. Electronic address:
Duchenne muscular dystrophy (DMD) is a severe muscle disorder caused by mutations in the DMD gene, leading to dystrophin deficiency. Antisense oligonucleotide (ASO)-mediated exon skipping offers potential by partially restoring dystrophin, though current therapies remain mutation specific with limited efficacy. To overcome those limitations, we developed brogidirsen, a dual-targeting ASO composed of two directly connected 12-mer sequences targeting exon 44 using phosphorodiamidate morpholino oligomers.
View Article and Find Full Text PDFEur J Clin Invest
December 2024
Department of Surgery, University of California Los Angeles, Los Angeles, California, USA.
Background: Alternative splicing is a fundamental mechanism in the post-transcriptional regulation of genes. The multifunctional transmembrane glycoprotein receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) undergoes extensive alternative splicing to allow for tunable functions in cell signalling, adhesion and modulation of immune and metabolic responses. Splice isoforms that differ in their ectodomain and short or long cytoplasmic tail (CEACAM1-S/CEACAM1-L) have distinct functional roles.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India.
Phosphorodiamidate Morpholino Oligonucleotides (PMOs) have been well established in the milieu of FDA-approved oligonucleotide-based drugs in the past decade. Given their relevance in antisense therapeutics, a DNA/RNA synthesizer-compatible modular synthesis protocol of PMOs is long awaited to explore next-generation PMO chimeras with other therapeutically proven oligonucleotide backbones. Herein, we demonstrate a streamlined 5' → 3'phosphoramidite approach for the synthesis of PMOs using -butyl-protected 5'-morpholino phosphoramidites, which were synthesized from 5'-OH morpholino monomers derived from commercially available ribonucleosides.
View Article and Find Full Text PDFAdv Ther
November 2024
Sarepta Therapeutics, Inc, Cambridge, MA, 02142, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!