Fipronil is a phenylpyrazole insecticide that is widely used in residential and agricultural settings to control ants, roaches, termites, and other pests. Fipronil and its transformation products have been found in a variety of environmental matrices, but the source[s] which makes the greatest contribution to fipronil in surface water has yet to be determined. A sampling effort designed to prioritize known fipronil inputs (golf courses, residential areas, biosolids application sites and wastewater facilities) was conducted in North Carolina to learn more about the origins of fipronil in surface water. High resolution mass spectrometry (HRMS) analysis indicated that fipronil and its known derivatives were routinely present in all samples, but concentrations were substantially elevated near wastewater treatment plant outfalls (range 10-500ng/L combined), suggesting that they predominate as environmental sources. Corresponding recycled wastewater samples, which were treated with NaOCl for disinfection, showed disappearance of fipronil and all known degradates. HRMS and nuclear magnetic resonance (NMR) analysis techniques were used to determine that all fipronil-related compounds are oxidized to a previously unidentified fipronil sulfone chloramine species in recycled wastewater. The implications of the presence of a new fipronil-related compound in recycled wastewater need to be considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2016.05.085 | DOI Listing |
Org Biomol Chem
January 2025
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
As one of the main fragments in medical drugs, spirooxindole has received considerable attention from organic and medicinal chemists. In the past few decades, chemists have been searching for more straightforward and efficient methods to produce compounds containing a spirooxindole fragment. In this regard, isatin-derived Morita-Baylis-Hillman (MBH) carbonates have been widely used as versatile building blocks for the synthesis of spirooxindole structures.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Institute of Soil and Fertilizer and Agricultural Sparing Water, Xinjiang Academy of Agricultural Science, Urumqi, China.
Introduction: To address the scarcity of agricultural phosphorus (P) fertilizers and reduce phosphorus accumulation in wastewater, this study employed iron-modified biochar (Fe-B) to adsorb phosphorus from water. The phosphorus-loaded iron-modified biochar (Fe-BP) was subsequently applied to peanut fields. Batch experiments were conducted to determine the optimal adsorption parameters and mechanism of Fe-B for phosphate ions (PO ).
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
Sulfur autotrophic denitrification (SAD) is a promising technology for nitrogen removal, particularly suitable for low carbon-to-nitrogen wastewater without additional carbon sources. However, SAD inevitably generates significant amounts of SO. To address this issue, combining SAD with iron-carbon micro-electrolysis technology, which can reduce sulfate, provides electron donors for autotrophic denitrification and facilitates sulfur cycling.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Business and Economics, Australia National University, Canberra, Australia. Electronic address:
Improving water reuse efficiency from a recycling perspective is claimed to be a better way to alleviate global water scarcity and water pollution. This study opens the internal "black box" of China's water reuse system driven and decomposes water reuse system into water use, wastewater treatment and reclaimed water reuse stages, and selects input-output indicators based on SDG6. Then, it proposes a dynamic three-stage DEA model to assess the water reuse efficiency.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China. Electronic address:
Water pollution has become an increasingly serious issue, necessitating the design and development of more effective wastewater treatment methods. Chitosan-based hydrogels, owing to their unique structural and chemical properties, have demonstrated high efficiency in removing contaminants. However, the application remains restricted by the scarcity of effective adsorption sites and limited environmental stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!