Airway remodeling is a histopathological hallmark of chronic respiratory diseases that includes airway smooth muscle cell (ASMC) proliferation. Canonical transient receptor potential channel-3 (TRPC3)-encoded nonselective cation channels (NSCCs) are important native constitutively active channels that play significant roles in physiological and pathological conditions in ASMCs. Lipopolysaccharides (LPSs), known as lipoglycans and endotoxin, have been proven to be inducers of airway remodeling, though the mechanisms remain unclear. We hypothesized that TRPC3 is important in LPS-induced airway remodeling by regulating ASMC proliferation. To test this hypothesis, mouse ASMCs were cultured with or without LPS for 48h. Cell viability, TRPC3 protein expression, NSCC currents and changes in intracellular calcium concentration ([Ca(2+)]i) were then analyzed using an MTT assay, western blotting, whole-cell patch clamp and calcium imaging, respectively. The results showed that LPS treatment significantly induced ASMC proliferation, up-regulation of TRPC3 protein expression and enhancement of NSCC currents, resting [Ca(2+)]i and ACh-elicited changes in [Ca(2+)]i. TRPC3 blocker Gd(3+), TRPC3 blocking antibody or TRPC3 gene silencing by siRNA significantly inhibited LPS-induced up-regulation of TRPC3 protein, enhancement of NSCC currents, resting [Ca(2+)]i and ACh-elicited changes in [Ca(2+)]i, eventually inhibiting LPS-induced ASMCproliferation. These results demonstrated that TRPC3-mediated Ca(2+) entry contributed to LPS-induced ASMC proliferation and identified TRPC3 as a possible key target in airway remodeling intervention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ceca.2016.06.005 | DOI Listing |
J Asthma Allergy
December 2024
Department of Public Health, School of Allied Medical Sciences, Kampala International University, Western Campus, Ishaka, Bushenyi, Uganda.
Allergies represent a significant and growing public health concern, affecting millions worldwide and burdening healthcare systems substantially. Accurate diagnosis and understanding of allergy is crucial for effective management and treatment. This review aims to explore the historical evolution, current advances, and prospects of histopathological and cytological techniques in allergy diagnosis, highlighting their crucial role in modern medicine.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
Asthma affects approximately 300 million individuals worldwide and the onset predominantly arises in childhood. Children are exposed to multiple environmental irritants, such as viruses and allergens, that are common triggers for asthma onset, whilst their immune systems are developing in early life. Understanding the impact of allergen exposures on the developing immune system and resulting alterations in lung function in early life will help prevent the onset and progression of allergic asthma in children.
View Article and Find Full Text PDFExpert Rev Respir Med
January 2025
School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, USA.
Introduction: In genetically predisposed individuals, exposure to aeroallergens and infections from RNA viruses shape epithelial barrier function, leading to Allergic Asthma (AA). Here, activated pattern recognition receptors (PRRs) in lower airway sentinel cells signal epithelial injury-repair pathways leading to cell-state changes [epithelial mesenchymal plasticity (EMP)], barrier disruption and sensitization.
Areas Covered: 1.
Am J Physiol Cell Physiol
December 2024
Departement of Respiratory Medicine, Xinhua hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
CD147 has the potential to serve as a specific target with therapeutic characteristics in several respiratory diseases. Studies have demonstrated that CD147 regulates levels of oxidative phosphorylation (OXPHOS) through the process of mitochondrial translocations. However, there is still limited insight in the distinct mechanism of CD147 in asthmatic macrophages.
View Article and Find Full Text PDFPLoS One
December 2024
Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, Republic of Korea.
Th2 inflammation and epithelial-mesenchymal transition (EMT) play crucial roles in the pathophysiology of chronic rhinosinusitis with nasal polyps (CRSwNP). This study aimed to investigate the hypothesis that MMP-12, produced by M2 macrophages, induces EMT in nasal epithelial cells, thereby contributing to airway inflammation and remodeling in CRSwNP. The expression levels of MMP-12 were measured by RT-PCR in CRS nasal mucosa and THP-1 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!