AI Article Synopsis

  • A study demonstrates a new interaction between deoxyhemoglobin, nitrite, and RRx-001 that boosts nitric oxide (NO) production in blood.
  • RRx-001 significantly speeds up the nitrite reduction process by deoxyhemoglobin, enhancing NO generation compared to nitrite reduction alone.
  • The findings suggest that RRx-001 could help release NO specifically in low-oxygen tumor areas, potentially contributing to its tumor-killing effects by inhibiting mitochondrial respiration.

Article Abstract

This study reveals a novel interaction between deoxyhemoglobin, nitrite and the non-toxic compound, RRx-001, to generate supraphysiologic levels of nitric oxide (NO) in blood. We characterize the nitrite reductase activity of deoxyhemoglobin, which in the presence of bound RRx-001 reduces nitrite at a much faster rate, leading to markedly increased NO generation. These data expand on the paradigm that hemoglobin generates NO via nitrite reduction during hypoxia and ischemia when nitric oxide synthase (NOS) function is limited. Here, we demonstrate that RRx-001 greatly enhances NO generation from nitrite reduction. RRx-001 is thus the first example of a functional superagonist for nitrite reductase. We hypothesize that physiologically this reaction releases the potentially cytotoxic effector NO selectively in hypoxic tumor regions. It may be that a binary NO-H2O2 trigger is indirectly responsible for the observed tumoricidal activity of RRx-001 since NO is known to inhibit mitochondrial respiration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12032-016-0798-9DOI Listing

Publication Analysis

Top Keywords

nitric oxide
12
nitrite reductase
8
nitrite reduction
8
rrx-001
6
nitrite
6
targeting tumor
4
tumor hypoxia
4
hypoxia epigenetic
4
epigenetic anticancer
4
anticancer agent
4

Similar Publications

This paper describes the first use of conductive metal-organic frameworks as the active material in the electrochemical detection of nitric oxide in aqueous solution. Four hexahydroxytriphenylene (HHTP)-based MOFs linked with first-row transition metal nodes (M = Co, Ni, Cu, Zn) were compared as thin-film working electrodes for promoting oxidation of NO using voltammetric and amperometric techniques. Cu- and Ni-linked MOF analogs provided signal enhancement of 5- to 7-fold over a control glassy carbon electrode (SA = 6.

View Article and Find Full Text PDF

The assessment of exhaled nitric oxide in patients with obesity and asthma before and after exercise.

J Asthma

January 2025

Division of Pediatric Allergy and Immunology, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.

Objective: It is well known that children who suffer from obesity and asthma may also have exercise-induced bronchospasm. Exhaled nitric oxide is an indicator of airway inflammation, and could be affected by exercise. This study looked at how exercise, which is a typical cause of acute airway obstruction, affects the levels of FeNO and in obese and asthmatic children.

View Article and Find Full Text PDF

The pivotal roles played by nitric oxide (NO) in tissue repair, inflammation, and immune response have spurred the development of a wide range of NO-releasing biomaterials. More recently, 3D printing techniques have significantly broadened the potential applications of polymeric biomaterials in biomedicine. In this context, the development of NO-releasing biomaterials that can be fabricated through 3D printing techniques has emerged as a promising strategy for harnessing the benefits of localized NO release from implantable devices, tissue regeneration scaffolds, or bandages for topical applications.

View Article and Find Full Text PDF

Fine particulate matter (PM2.5) is known to exacerbate chronic respiratory disorders, primarily by inducing inflammatory responses and mucus overproduction. Perilla leaves are reported to have significant health benefits, such as antioxidant, antibacterial, and antiallergic properties, attributed to phenolic compounds that vary depending on genetic diversity.

View Article and Find Full Text PDF

Grapes are prone to softening, which limits their shelf life and suitability for long-distance transport. This study explored the molecular mechanisms underlying the effects of the chemical preservatives gibberellin (GA) and the nitric oxide donor sodium nitroprusside (SNP) on grape firmness. Enhancing grape quality, prolonging shelf life, and extending market supply were key objectives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!