Doping of semiconductors by introducing foreign atoms enables their widespread applications in microelectronics and optoelectronics. We show that this strategy can be applied to direct bandgap lead-halide perovskites, leading to the realization of ultrawide photoluminescence (PL) at new wavelengths enabled by doping bismuth (Bi) into lead-halide perovskites. Structural and photophysical characterization reveals that the PL stems from one class of Bi doping-induced optically active center, which is attributed to distorted [PbI6] units coupled with spatially localized bipolarons. Additionally, we find that compositional engineering of these semiconductors can be employed as an additional way to rationally tune the PL properties of doped perovskites. Finally, we accomplished the electroluminescence at cryogenic temperatures by using this system as an emissive layer, marking the first electrically driven devices using Bi-doped photonic materials. Our results suggest that low-cost, earth-abundant, solution-processable Bi-doped perovskite semiconductors could be promising candidate materials for developing optical sources operating at new wavelengths.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.6b01147 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, Korea.
Advancements in printing techniques are essential for fabricating next-generation displays. Lead halide perovskites demonstrate great potential as light emitters of solution-processed light-emitting diodes (LEDs). In particular, the perovskite/polymer composite emitters exhibit exceptional luminescent characteristics, mechanical flexibility, and environmental stability due to the improved film morphologies and defect passivation achieved through the introduction of polymer additives.
View Article and Find Full Text PDFChem Asian J
January 2025
JNCASR: Jawaharlal Nehru Centre for Advanced Scientific Research, New Chemistry Unit, Jakkur, 560064, Bangalore, INDIA.
This study investigates the photophysical behaviour of Mn/Fe and Mn/Sn co-doped CsPbCl3 perovskite nanocrystals (NCs) to explore carrier dynamics and dopant interactions. Using gated photoluminescence (PL) and temperature-dependent measurements, we elucidate the impact of dopant chemistry on exciton behaviour, focusing on vibrationally assisted delayed fluorescence (VADF) and energy transfer mechanisms. The efficiency of VADF is influenced by factors such as the bandgap, temperature, quantum confinement, and host composition.
View Article and Find Full Text PDFNanoscale
January 2025
Laboratory of New Materials for Solar Energetics, Department of Materials Science, Lomonosov Moscow State University, 1 Lenin Hills, 119991, Moscow, Russia.
Identification of crystal structures is a crucial stage in the exploration of novel functional materials. This procedure is usually time-consuming and can be false-positive or false-negative. This necessitates a significant level of expert proficiency in the field of crystallography and, especially, requires deep experience in perovskite-related structures of hybrid perovskites.
View Article and Find Full Text PDFNPG Asia Mater
May 2024
Department of Chemistry, KU Leuven, Leuven, Belgium.
All-inorganic lead halide perovskites (LHPs) and their use in optoelectronic devices have been widely explored because they are more thermally stable than their hybrid organic‒inorganic counterparts. However, the active perovskite phases of some inorganic LHPs are metastable at room temperature due to the critical structural tolerance factor. For example, black phase CsPbI is easily transformed back to the nonperovskite yellow phase at ambient temperature.
View Article and Find Full Text PDFACS Nano
January 2025
Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Understanding energy transport in semiconductors is critical for the design of electronic and optoelectronic devices. Semiconductor material properties, such as charge carrier mobility or diffusion length, are commonly measured in bulk crystals and determined using models that describe transport behavior in homogeneous media, where structural boundary effects are minimal. However, most emerging semiconductors exhibit nano- and microscale heterogeneity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!