Key Points: Kv1.2 and related voltage-gated potassium channels have a highly conserved N-linked glycosylation site in the first extracellular loop, with complex glycosylation in COS-7 cells similar to endogenous Kv1.2 glycosylation in hippocampal neurons. COS-7 cells expressing Kv1.2 show a crucial role of this N-linked glycosylation in the forward trafficking of Kv1.2 to the cell membrane. Although both wild-type and non-glycosylated mutant Kv1.2 channels that have reached the cell membrane are internalized at a comparable rate, mutant channels are degraded at a faster rate. Treatment of wild-type Kv1.2 channels on the cell surface with glycosidase to remove sialic acids also results in the faster degradation of internalized channels. Glycosylation of Kv1.2 is important with respect to facilitating trafficking to the cell membrane and enhancing the stability of channels that have reached the cell membrane.
Abstract: Studies in cultured hippocampal neurons and the COS-7 cell line demonstrate important roles for N-linked glycosylation of Kv1.2 channels in forward trafficking and protein degradation. Kv1.2 channels can contain complex N-linked glycans, which facilitate cell surface expression of the channels. Additionally, the protein stability of cell surface-expressed Kv1.2 channels is affected by glycosylation via differences in the degradation of internalized channels. The present study reveals the importance of N-linked complex glycosylation in boosting Kv1.2 channel density. Notably, sialic acids at the terminal sugar branches play an important role in dampening the degradation of Kv1.2 internalized from the cell membrane to promote its stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5108895 | PMC |
http://dx.doi.org/10.1113/JP272394 | DOI Listing |
Sci Rep
December 2024
School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA.
Voltage-gated potassium channels (VGKCs) comprise the largest and most complex families of ion channels. Approximately 70 genes encode VGKC alpha subunits, which assemble into functional tetrameric channel complexes. These subunits can also combine to form heteromeric channels, significantly expanding the potential diversity of VGKCs.
View Article and Find Full Text PDFFASEB J
December 2024
Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.
K1.2 is a prominent ion channel in the CNS, where it regulates neuronal excitability. K1.
View Article and Find Full Text PDFHypertension
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy (S.P., A.K.B., A.J.S.), University of Arkansas for Medical Sciences, Little Rock, AR.
Background: Hypertension increases the risk of lymphedema in patients with comorbidities, but whether hypertension directly compromises lymph vessel (LV) function and lymph flow is unclear. We compared the contractions of mesenteric LVs ex vivo and lymph flow in vivo between normotensive and Ang II (angiotensin II)-induced hypertensive rats and explored the ionic basis of contractile patterns. Key studies were recapitulated in spontaneously hypertensive rats and control Wistar-Kyoto rats.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2024
Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
A missense mutation c.1220C>G of gene was recently identified in an infant with epilepsy. encodes K1.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
September 2024
From the Carl-Ludwig-Institute of Physiology (A.R.-J., F.G., T.K., S.M., S.H.), Faculty of Medicine, Leipzig University; Section Translational Neuroimmunology (J.S., C.G.), Department of Neurology, Jena University Hospital; Department of Biotechnology and Biophysics (S.S., C.W., M.S.), University of Würzburg, Biocenter, Germany; Institute of Science and Technology Austria (ISTA) (J.M., R.S.), Klosterneuburg, Austria; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, ; Department of Neurology (S.R.I.), John Radcliffe Hospital, Oxford University Hospitals, United Kingdom; and Departments of Neurology and Neurosciences (S.R.I.), Mayo Clinic Jacksonville, FL.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!