Curcumin has protective and antioxidant properties on bull spermatozoa subjected to induced oxidative stress.

Anim Reprod Sci

Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia.

Published: September 2016

Over the past decades, there has been an emphasis on assessment of the use of natural compounds in the prevention or repair of oxidative injury to spermatozoa. Curcumin (CUR) is a natural phenol with powerful antioxidant properties. The aim of the present study was to examine if CUR could reverse reactive oxygen species (ROS)-mediated alterations to the motility, viability and intracellular antioxidant profile of bull spermatozoa subjected to a prooxidant (i.e., ferrous ascorbate - FeAA). Spermatozoa were washed from recently collected semen samples, suspended in 2.9% sodium citrate and subjected to CUR treatment (5, 10, 25 and 50μmol/L) in the presence or absence of FeAA (150μmol/L FeSO4 and 750μmol/L ascorbic acid) during a 6h in vitro culture. Spermatozoa motility characteristics were assessed using the SpermVision computer-aided spermatozoa analysis (CASA) system. Cell viability was examined with the metabolic activity (MTT) assay, ROS generation was quantified using luminometry and the nitroblue-tetrazolium (NBT) test was used to quantify the intracellular superoxide formation. Cell lysates were prepared at the end of the culture to assess the intracellular activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) as well as the concentrations of glutathione (GSH) and malondialdehyde (MDA). Treatment with FeAA led to a reduced spermatozoa motility (P<0.001), viability (P<0.001) and decreased the antioxidant characteristics of the samples (P<0.001) but increased the ROS generation (P<0.001), superoxide production (P<0.001) and lipid peroxidation (P<0.001). The CUR treatment led to a preservation of spermatozoa motion (P<0.001), mitochondrial activity (P<0.001) and antioxidant characteristics (P<0.05 with SOD and GSH; P<0.01 with CAT and GPx), revealing the concentration range of 25-50μmol/L CUR to be the most effective for sustaining spermatozoa viability. Data from the present study suggest that CUR exhibits significant protective and ROS-scavenging characteristics which may prevent oxidative insults to spermatozoa and thus preserve the functional activity of male gametes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anireprosci.2016.06.008DOI Listing

Publication Analysis

Top Keywords

antioxidant properties
8
bull spermatozoa
8
spermatozoa subjected
8
spermatozoa motility
8
spermatozoa
7
curcumin protective
4
protective antioxidant
4
properties bull
4
subjected induced
4
induced oxidative
4

Similar Publications

Understanding the molecular mechanisms that confer cold resistance in mammalian cells might be relevant for advancing medical applications. This study aimed to exploit the protective function of Late Embryogenesis Abundant (LEA) proteins, known to provide resistance to low temperatures in extremophiles and plants, by their exogenous expression in mammalian cells, and compare their effects with the well characterized antioxidant, vitamin E.Remarkably, the expression of LEA proteins in mammalian cells exerted cold-protective effect similar to Vitamin E.

View Article and Find Full Text PDF

Aim: This study was dedicated to investigating the role of sulfur metabolic processes in sulfate-reducing bacteria in plant resistance to heavy metal contamination.

Methods And Results: We constructed sulfate-reducing bacterial communities based on the functional properties of sulfate-reducing strains, and then screened out the most effective sulfate-reducing bacterial community SYN1, that prevented Cd and Pb uptake in rice through hydroponic experiment. This community lowered Cd levels in the roots and upper roots by 36.

View Article and Find Full Text PDF

Uncovering the naturally occurring covalent inhibitors of SARS-CoV-2 M from the Chinese medicine sappanwood and deciphering their synergistic anti-M effects.

J Ethnopharmacol

January 2025

Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014. Electronic address:

Ethnopharmacological Relevance: The Chinese medicine sappanwood is primarily sourced from the dried heartwood of the medicinal plant Caesalpinia sappan Linn., which has been found with a variety of valuable properties including anti-inflammatory, anti-oxidant, and anti-viral effects. Preliminary investigations have demonstrated that sappanwood showed strong anti-SARS-CoV-2 M effects, but the key constituents responsible for SARS-CoV-2 M inhibition and their anti-M mechanisms have not been uncovered.

View Article and Find Full Text PDF

Cinnamaldehyde (CIN) is gaining interest as a highly effective natural antimicrobial agent to extend the shelf life of fruits. However, its inherent instability limits further applications. In this work, a new strategy for the synthesis of HKUST-1 to encapsulate CINs by in situ growth method using copper-ammonia fiber as precursors is proposed.

View Article and Find Full Text PDF

Construction, characterization and application of rutin loaded zein - Carboxymethyl starch sodium nanoparticles.

Int J Biol Macromol

January 2025

School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China. Electronic address:

In this paper, zein-carboxymethyl starch (CMS) nanoparticles were prepared by antisolvent precipitation method to improve the stability of rutin (RT). The encapsulation efficiency, loading capacity, oxidation resistance, structural properties were evaluated. The results showed that electrostatic, hydrogen bond and hydrophobic interaction were the main driving forces for the formation of nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!