A sustainable on-line CapLC method for quantifying antifouling agents like irgarol-1051 and diuron in water samples: Estimation of the carbon footprint.

Sci Total Environ

Departament de Química Analítica, Facultad de Química, Universitat de Valencia, C/ Doctor Moliner 50, E46100 Burjassot, Valencia, Spain. Electronic address:

Published: November 2016

In this work, in-tube solid phase microextraction (in-tube SPME) coupled to capillary LC (CapLC) with diode array detection has been reported, for on-line extraction and enrichment of booster biocides (irgarol-1051 and diuron) included in Water Frame Directive 2013/39/UE (WFD). The analytical performance has been successfully demonstrated. Furthermore, in the present work, the environmental friendliness of the procedure has been quantified by means of the implementation of the carbon footprint calculation of the analytical procedure and the comparison with other methodologies previously reported. Under the optimum conditions, the method presents good linearity over the range assayed, 0.05-10μg/L for irgarol-1051 and 0.7-10μg/L for diuron. The LODs were 0.015μg/L and 0.2μg/L for irgarol-1051 and diuron, respectively. Precision was also satisfactory (relative standard deviation, RSD<3.5%). The proposed methodology was applied to monitor water samples, taking into account the EQS standards for these compounds. The carbon footprint values for the proposed procedure consolidate the operational efficiency (analytical and environmental performance) of in-tube SPME-CapLC-DAD, in general, and in particular for determining irgarol-1051 and diuron in water samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2016.06.181DOI Listing

Publication Analysis

Top Keywords

irgarol-1051 diuron
12
carbon footprint
8
sustainable on-line
4
on-line caplc
4
caplc method
4
method quantifying
4
quantifying antifouling
4
antifouling agents
4
irgarol-1051
4
agents irgarol-1051
4

Similar Publications

Current Status of Antifouling Biocides Contamination in the Seto Inland Sea, Japan.

Arch Environ Contam Toxicol

November 2023

Hatsukaichi Branch, Fisheries Technology Institute, Japan, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan.

A monitoring survey of antifouling biocides was conducted in the Harima Nada Sea and Osaka Bay of the Seto Inland Sea, Japan to assess contamination by organotin (OT) compounds and alternative biocides. The concentrations of tributyltin (TBT) compounds in surface water ranged from 1.0 to 2.

View Article and Find Full Text PDF

Besides the release of organic matter from uneaten feed and fish excreta, a considerable amount of deleterious chemicals may also end up into the marine environment from intensive aquaculture. A fraction of these pollutants remains freely dissolved and pose a threat to marine life due to increased bioavailability. Given the filter-feeding ability of sponges, we investigated the capacity of four ubiquitous Mediterranean species (Agelas oroides, Axinella cannabina, Chondrosia reniformis and Sarcotragus foetidus) in removing aquaculture-related dissolved organic pollutants.

View Article and Find Full Text PDF
Article Synopsis
  • Tropical coral reefs, covering only 0.1% of the Earth's surface, are home to immense marine biodiversity and provide essential services, but face threats from global issues like climate change and local challenges such as chemical pollution.
  • This study systematically reviewed experiments on chemical toxicity to reef-building corals to create useful data for ecological risk assessment, determining toxicity thresholds and comparing them to regulatory safety levels for marine life.
  • The research leveraged a comprehensive database of ecotoxicological studies to ensure rigorous evaluation of the impacts of pollutants on corals, assessing the quality of the studies and aiming to create actionable knowledge for ecosystem management.
View Article and Find Full Text PDF

Water quality criteria derivation and tiered ecological risk evaluation of antifouling biocides in marine environment.

Mar Pollut Bull

February 2023

College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China. Electronic address:

This study provides a comprehensive compilation of published toxicological and environmental data further used to assess the ecological risks of six antifouling biocides, including tributyltin (TBT), Irgarol 1051, Diuron, Chlorothalonil, 4,5-Dichloro-N-octyl-3(2H)-isothiazolone (DCOIT), and Dichlofluanid. The standard maximum concentration and standard continuous concentration of antifouling biocides were derived by the species susceptibility distribution method. Following that, the ecological risk assessment of antifouling biocides in the aquatic environment was conducted using the hazard quotient, margin of safety, joint probability curve, and Monte Carlo random sampling method.

View Article and Find Full Text PDF

Assessment of the risk posed by three antifouling biocides to Pacific oyster embryos and larvae in Hiroshima Bay, Japan.

Environ Sci Pollut Res Int

February 2022

Hatsukaichi Branch, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan.

The Pacific oyster (Crassostrea gigas) is an important species in oyster farming worldwide, including in Japan. Hiroshima Bay is one of the most important oyster farming areas in Japan. We investigated the occurrence of antifouling biocides used worldwide including diuron, Irgarol 1051 (Irgarol), and 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), which have been detected at sub-ppb levels in seawater in Japan, and estimated their no observed effect concentrations (NOECs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!