A microstructured graphitic 4 × 4 multielectrode array was embedded in a single-crystal diamond substrate (4 × 4 μG-SCD MEA) for real-time monitoring of exocytotic events from cultured chromaffin cells and adrenal slices. The current approach relies on the development of a parallel ion beam lithographic technique, which assures the time-effective fabrication of extended arrays with reproducible electrode dimensions. The reported device is suitable for performing amperometric and voltammetric recordings with high sensitivity and temporal resolution, by simultaneously acquiring data from 16 rectangularly shaped microelectrodes (20 × 3.5 μm(2)) separated by 200 μm gaps. Taking advantage of the array geometry we addressed the following specific issues: (i) detect both the spontaneous and KCl-evoked secretion simultaneously from several chromaffin cells directly cultured on the device surface, (ii) resolve the waveform of different subsets of exocytotic events, and (iii) monitoring quantal secretory events from thin slices of the adrenal gland. The frequency of spontaneous release was low (0.12 and 0.3 Hz, respectively, for adrenal slices and cultured cells) and increased up to 0.9 Hz after stimulation with 30 mM KCl in cultured cells. The spike amplitude as well as rise and decay time were comparable with those measured by carbon fiber microelectrodes and allowed to identify three different subsets of secretory events associated with "full fusion" events, "kiss-and-run" and "kiss-and-stay" exocytosis, confirming that the device has adequate sensitivity and time resolution for real-time recordings. The device offers the significant advantage of shortening the time to collect data by allowing simultaneous recordings from cell populations either in primary cell cultures or in intact tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.5b04449 | DOI Listing |
J Am Chem Soc
September 2024
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96 Gothenburg, Sweden.
Acetylcholine (ACh) is a critical neurotransmitter influencing various neurophysiological functions. Despite its significance, quantitative methods with adequate spatiotemporal resolution for recording a single exocytotic ACh efflux are lacking. In this study, we introduce an ultrafast amperometric ACh biosensor that enables 50 kHz electrochemical recording of spontaneous single exocytosis events at axon terminals of differentiated cholinergic human SH-SY5Y neuroblastoma cells with sub-millisecond temporal resolution.
View Article and Find Full Text PDFJ Physiol
August 2024
Department of Neuroscience and Biophysics PhD Program, University of Wisconsin-Madison, Madison, WI, USA.
Somatostatin, a peptide hormone that activates G-protein-coupled receptors, inhibits the secretion of many hormones. This study investigated the mechanisms of this inhibition using amperometry recording of Ca-triggered catecholamine secretion from mouse chromaffin cells. Two distinct stimulation protocols, high-KCl depolarization and caffeine, were used to trigger exocytosis, and confocal fluorescence imaging was used to monitor the rise in intracellular free Ca.
View Article and Find Full Text PDFChem Sci
July 2024
Département de Chimie, PASTEUR, Ecole Normale Supérieure, PSL Université, Sorbonne Université, CNRS 24 rue Lhomond Paris 75005 France
Single cell amperometry has proven to be a powerful and well-established method for characterizing single vesicular exocytotic events elicited at the level of excitable cells under various experimental conditions. Nevertheless, most of the reported characteristics are descriptive, being mostly concerned with the morphological characteristics of the recorded current spikes (maximum current intensities, released charge, rise and fall times, ) which are certainly important but do not provide sufficient kinetic information on exocytotic mechanisms due to lack of quantitative models. Here, continuing our previous efforts to provide rigorous models rationalizing the kinetic structures of frequently encountered spike types (spikes with unique exponential decay tails and kiss-and-run events), we describe a new theoretical approach enabling a quantitative kinetic modeling of all types of exocytotic events giving rise to current spikes exhibiting exponential decay tails.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 19, 41390, Gothenburg, Sweden.
Serotonin, a monoamine neurotransmitter, is important in both the central nervous system (CNS) and the peripheral nervous system. Malfunction of serotonin signaling leads to various disorders. We studied serotonin signaling from serotonergic neurons inside the ventral nerve cord of Drosophila melanogaster.
View Article and Find Full Text PDFPlant Sci
August 2024
Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy. Electronic address:
Although Boraginaceae have been classified as good sources of nectar for many insects, little is still known about their nectar and nectaries. Thus, in the present contribution, we investigated the nectar production dynamics and chemistry in Borago officinalis L. (borage or starflower), together with its potential interaction capacity with pollinators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!