Rapid technological advances for the frequent monitoring of health parameters have raised the intriguing possibility that an individual's genotype could be predicted from phenotypic data alone. Here we used a machine learning approach to analyze the phenotypic effects of polymorphic mutations in a mouse model of Huntington's disease that determine disease presentation and age of onset. The resulting model correlated variation across 3,086 behavioral traits with seven different CAG-repeat lengths in the huntingtin gene (Htt). We selected behavioral signatures for age and CAG-repeat length that most robustly distinguished between mouse lines and validated the model by correctly predicting the repeat length of a blinded mouse line. Sufficient discriminatory power to accurately predict genotype required combined analysis of >200 phenotypic features. Our results suggest that autosomal dominant disease-causing mutations could be predicted through the use of subtle behavioral signatures that emerge in large-scale, combinatorial analyses. Our work provides an open data platform that we now share with the research community to aid efforts focused on understanding the pathways that link behavioral consequences to genetic variation in Huntington's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nbt.3587DOI Listing

Publication Analysis

Top Keywords

huntington's disease
12
behavioral signatures
8
behavioral
5
large-scale phenome
4
phenome analysis
4
analysis defines
4
defines behavioral
4
behavioral signature
4
signature huntington's
4
disease
4

Similar Publications

Introduction: Neuroinflammation is correlated to neurodegenerative diseases like Alzheimer's disease (AD), Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), Huntington Disease (HD) and Parkinson's disease (PD). A lot of recent research and patents are focused on the design and synthesis of arachidonic acid Lipoxygenase (ALOX) inhibitors for the treatment of neurodegenerative diseases.

Areas Covered: The survey covers natural products, synthesis, hybrids, and assessments of biological effects in biological studies as ALOX inhibitors.

View Article and Find Full Text PDF

Synaptic modulation of glutamate in striatum of the YAC128 mouse model of Huntington disease.

Neurobiol Dis

December 2024

Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada. Electronic address:

Background: Altered balance between striatal direct and indirect pathways contributes to early motor, cognitive and psychiatric symptoms in Huntington disease (HD). While degeneration of striatal D2-type dopamine receptor (D2)-expressing indirect pathway medium spiny neurons (iMSNs) occurs prior to that of D1-type dopamine receptor (D1)-expressing direct pathway neurons, altered corticostriatal synaptic function precedes degeneration. D2-mediated signaling on iMSNs reduces their excitability and promotes endocannabinoid (eCB) synthesis, suppressing glutamate release from cortical afferents.

View Article and Find Full Text PDF

Oligodendrocytes in Huntington's Disease: A Review of Oligodendrocyte Pathology and Current Cell Reprogramming Approaches for Oligodendrocyte Modelling of Huntington's Disease.

J Neurosci Res

December 2024

Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, School of Medical Science, Centre for Brain Research, University of Auckland, Auckland, New Zealand.

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder traditionally characterized by the selective loss of medium spiny neurons in the basal ganglia. However, it has become apparent that white matter injury and oligodendrocyte dysfunction precede the degeneration of medium spiny neurons, garnering interest as a key pathogenic mechanism of HD. Oligodendrocytes are glial cells found within the central nervous system involved in the production of myelin and the myelination of axons.

View Article and Find Full Text PDF

Mutant huntingtin protein decreases with CAG repeat expansion: implications for therapeutics and bioassays.

Brain Commun

November 2024

Department of Neurodegenerative Disease, Huntington's Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.

Huntington's disease is an inherited neurodegenerative disorder caused by a CAG repeat expansion that encodes a polyglutamine tract in the huntingtin (HTT) protein. The mutant CAG repeat is unstable and expands in specific brain cells and peripheral tissues throughout life. Genes involved in the DNA mismatch repair pathways, known to act on expansion, have been identified as genetic modifiers; therefore, it is the rate of somatic CAG repeat expansion that drives the age of onset and rate of disease progression.

View Article and Find Full Text PDF

Prosthetic joint infection (PJI), caused by Streptococcus bovis group (SBG), is uncommon and related to colorectal cancer. We present here a case of an 84-year-old male who had a past medical history of chronic obstructive pulmonary disease (COPD), congestive heart failure, pulmonary arterial hypertension, iron deficiency anemia, chronic kidney disease, diabetes mellitus, gout, hypertension, bilateral knee replacement with left knee pain and swelling. We initially suspected gout and treated him with prednisolone, but it did not relieve him.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!