Following myocardial infarction (MI), the left ventricle (LV) undergoes a series of molecular, cellular, and functional alterations that are both part of the wound healing response to form a scar in the infarct region and the consequence of that response. Using the laws of thermodynamics as an analogy, we present here three laws for categorizing the post-MI LV remodeling process. The first law is that the LV will attempt to maintain equilibrium and compensate as a way to maximize function, the second law is that remodeling is progressive and unidirectional, and the third law is that the final goal is (ideally, but not always achievable) a stable, equilibrated scar. This comparison helps to define the boundaries of the system, whether it be the infarct zone, the LV, the heart, or the entire body. This review provides an overview for those not directly in the field and establishes a framework to help prioritize future research directions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4930103 | PMC |
http://dx.doi.org/10.2147/MNM.S74093 | DOI Listing |
Entropy (Basel)
December 2024
Department of Applied Mathematics, University of Washington, Seattle, WA 98195-3925, USA.
Statistical counting is the holographic observable to a statistical dynamics with finite states under independent and identically distributed sampling. Entropy provides the infinitesimal probability for an observed empirical frequency ν^ with respect to a probability prior p, when ν^≠p as N→∞. Following Callen's postulate and through Legendre-Fenchel transform, without help from mechanics, we show that an internal energy u emerges; it provides a linear representation of real-valued observables with full or partial information.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, Maryland 20742, USA.
A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early Universe and in particle colliders, starting from the standard model of particle physics.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Physical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 65167 ,Iran.
Interfacial solar evaporator generation (ISVG) is a new, cost-effective, and eco-friendly emerging method for water desalination. Two main criteria for evaluating ISVG performance are evaporation rate () and solar-to-vapor conversion efficiency (η). The main challenge of the previously presented models for the estimation of and η in 2D systems is that in most cases the calculated values are beyond the theoretical limits, > 1.
View Article and Find Full Text PDFPhys Rev E
November 2024
Department of Mathematics, King's College London, Strand, London WC2R 2LS, United Kingdom.
We present a solution of the problem of level-set percolation for multivariate Gaussians defined in terms of weighted graph Laplacians on complex networks. It is achieved using a cavity or message passing approach, which allows one to obtain the essential ingredient required for the solution, viz. a self-consistent determination of locally varying percolation probabilities.
View Article and Find Full Text PDFHeliyon
December 2024
Virginia Tech, Blacksburg, VA, USA.
Using traditional machine learning (ML) methods may produce results that are inconsistent with the laws of physics. In contrast, physics-based models of complex physical, biological, or engineering systems incorporate the laws of physics as constraints on ML methods by introducing loss terms, ensuring that the results are consistent with these laws. However, accurately deriving the nonlinear and high order differential equations to enforce various complex physical laws is non-trivial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!