Microbiological contamination in the food industry is often attributed to the presence of biofilms in processing plants. Bacterial biofilms are complex communities of bacteria attached to a surface and surrounded by an extracellular polymeric material. Their extreme resistance to cleaning and disinfecting processes is related to a unique organization, which implies a differential bacterial growth and gene expression inside the biofilm. The impact of biofilms on health, and the economic consequences, has promoted the development of different approaches to control or remove biofilm formation. Recently, successful results in phage therapy have boosted new research in bacteriophages and phage lytic proteins for biofilm eradication. In this regard, this review examines the environmental factors that determine biofilm development in food-processing equipment. In addition, future perspectives for the use of bacteriophage-derived tools as disinfectants are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897796 | PMC |
http://dx.doi.org/10.3389/fmicb.2016.00825 | DOI Listing |
Curr Microbiol
January 2025
Department of Plant Pathology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan.
Xanthomonas citri pv. malvacearum (Xcm) associated with bacterial blight disease is a significant and widespread pathogen affecting cotton worldwide. The excessive use of harmful chemicals to control plant pathogens has exerted a negative impact on environmental safety.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemistry, Banasthali Vidhyapith, Banasthali, Rajasthan, 304022, India.
Plant extracts and bacterial biofilm are acknowledged to offer impressive corrosion-inhibitory activities. However, anticorrosive properties of their combination are still less reported. Thus, in the present study, we aimed to evaluate the corrosion inhibition efficiency of Saccharum officinarum bagasse (SOB) plant extract, Pseudomonas chlororaphis (P.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
The plastisphere, defined as the ecological niche for microbial colonization of plastic debris, has been recognized as a hotspot of pathogenic and antibiotic-resistant bacteria. However, the interactions between bacteria and phages facilitated by the plastisphere, as well as their impact on microbial risks to public health, remain unclear. Here, we analyzed public metagenomic data from 180 plastisphere and environmental samples, stemming from four different habitats and two plastic types (biodegradable and nonbiodegradable plastics) and obtained 611 nonredundant metagenome-assembled genomes (MAGs) and 4061 nonredundant phage contigs.
View Article and Find Full Text PDFHeliyon
January 2025
Bacterial Disease Laboratory, Postgraduate Program in Animal Science in Tropics - Federal University of Bahia, Salvador, Bahia, Brazil.
Leptospirosis is a zoonotic infectious disease that significantly impacts animal and public health. Comparative genomics can aid in understanding poorly understood aspects of leptospirosis pathogenesis, including infection mechanisms, antimicrobial resistance, and host interactions across different epidemiological scenarios. This study aimed to compare the genomes of serogroup Icterohaemorrhagiae strains isolated from three host species in a single epidemiological scenario.
View Article and Find Full Text PDFHeliyon
January 2025
Laboratorio de Investigación de Aguas, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla N° 3989-4089, Huancayo, Peru.
Introduction: Contamination of drinking water by can cause serious diseases, including cancer. The determinants of the infection rate are socioeconomic status, low standard of living and overcrowding. In addition, exposure to environmental sources contaminated with feces, such as water and vegetables, is another risk factor for infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!