Staphylococcus aureus is responsible for a wide variety of infections that include superficial skin and soft tissue infections, septicaemia, central nervous system infections, endocarditis, osteomyelitis and pneumonia. Others have demonstrated the importance of toxin-antitoxin (TA) modules in the formation of persisters and the role of the Clp proteolytic system in the regulation of these TA modules. This study was conducted to determine the effect of clpP and clpC deletion on S. aureus persister cell numbers following antibiotic treatment. Deletion of clpP resulted in a significant decrease in persister cells following treatment with oxacillin and erythromycin but not with levofloxacin and daptomycin. Deletion of clpC resulted in a decrease in persister cells following treatment with oxacillin. These differences were dependent on the antibiotic class and the CFU ml-1 in which the cells were treated. Persister revival assays for all the bacterial strains in these studies demonstrated a significant delay in resumption of growth characteristic of persister cells, indicating that the surviving organisms in this study were not likely due to spontaneous antibiotic resistance. Based on our results, ClpP and possibly ClpC play a role in persister cell formation or maintenance, and this effect is dependent on antibiotic class and the CFU ml-1 or the growth phase of the cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/jmm.0.000304 | DOI Listing |
Microbiol Res
March 2025
Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China. Electronic address:
Robust biofilm formation on host niches facilitates beneficial Bacillus to promote plant growth and inhibit plant pathogens. Arginine kinase McsB is involved in bacterial development and stress reaction by phosphorylating proteins for degradation through a ClpC/ClpP protease. Conversely, cognate arginine phosphatase YwlE counteracts the process.
View Article and Find Full Text PDFmBio
January 2025
Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.
is an obligate intracellular bacterium that undergoes a complex biphasic developmental cycle, alternating between the smaller, infectious, non-dividing elementary body (EB) and the larger, non-infectious but dividing reticulate body. Due to the differences between these functionally and morphologically distinct forms, we hypothesize protein degradation is essential to chlamydial differentiation. The bacterial Clp system, consisting of an ATPase unfoldase (e.
View Article and Find Full Text PDFInfect Genet Evol
December 2024
Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh. Electronic address:
mSphere
December 2024
Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.
Unlabelled: Our recent studies have shown that deficiency of MecA in significantly affects cell division, growth, and biofilm formation. In this study, an mixed-species model, proteomics, and affinity pull-down assays were used to further characterize the MecA-mediated regulation in . The results showed that compared with the wild type, UA159, the mutant significantly reduced its production of glucans and weakened its ability to facilitate mixed-species biofilm formation.
View Article and Find Full Text PDFACS Chem Biol
August 2024
Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
Protein degradation is a tightly regulated biological process that maintains bacterial proteostasis. ClpPs are a highly conserved family of serine proteases that associate with the AAA + ATPase (an ATPase associated with diverse cellular activities) to degrade protein substrates. Identification and biochemical characterization of protein substrates for the AAA + ATPase-dependent ClpP degradation systems are considered essential for gaining an understanding of the molecular operation of the complex ClpP degradation machinery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!