Harnessing solid-state packing for selective detection of chloride in a macrocyclic anionophore.

Chem Commun (Camb)

Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253, USA.

Published: July 2016

We report the synthesis of an inherently fluorescent macrocyclic receptor for chloride. The use of a disulphide tether provides for an excellent yield in the macrocyclization step. This compound binds chloride in the solution and solid state, and while unstable over time in aqueous solution, shows a selective response toward chloride over other anions in the solid state due to intermolecular interactions between fluorophore backbones. Surprisingly, the optoelectronic response to anions differs in solution and the films, with a distinct colorimetric response observed only in the film.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973467PMC
http://dx.doi.org/10.1039/c6cc03795jDOI Listing

Publication Analysis

Top Keywords

solid state
8
harnessing solid-state
4
solid-state packing
4
packing selective
4
selective detection
4
chloride
4
detection chloride
4
chloride macrocyclic
4
macrocyclic anionophore
4
anionophore report
4

Similar Publications

This study explores the formulation and characterization of poly(vinyl alcohol) (PVA)-based composite hydrogels synthesized through solid-state crosslinking. Comprehensive assessments were conducted on their physicochemical properties, leachables, and immunogenicity. Swelling experiments demonstrated that the incorporation of poly(vinylpyrrolidone) (PVP) enhanced water retention, while chitosan had a minimal effect on swelling behavior.

View Article and Find Full Text PDF

Nondestructive Mechanical Characterization of Bioengineered Tissues by Digital Holography.

ACS Biomater Sci Eng

January 2025

Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.

Mechanical properties of engineered connective tissues are critical for their success, yet modern sensors that measure physical qualities of tissues for quality control are invasive and destructive. The goal of this work was to develop a noncontact, nondestructive method to measure mechanical attributes of engineered skin substitutes during production without disturbing the sterile culture packaging. We optimized a digital holographic vibrometry (DHV) system to measure the mechanical behavior of Apligraf living cellular skin substitute through the clear packaging in multiple conditions: resting on solid agar as when the tissue is shipped, on liquid media in which it is grown, and freely suspended in air as occurs when the media is removed for feeding.

View Article and Find Full Text PDF

High Resolution-Magic Angle Spinning (HR-MAS) solid-state NMR spectroscopy is finding increasing application in the analysis of solid foods, bypassing the need for complicated solvent extraction procedures. In the present protocol, we report a simple analytical approach based on HR-MAS NMR spectroscopy for the phenolic profiling of olive fruits, flesh, or skin. This approach allows the facile characterization of phenolic compounds in olive fruits cultivated for extra-virgin olive oil production as a function of maturation and variety, in addition to processing technology for table olives.

View Article and Find Full Text PDF

Red-Shifted and Enhanced Photoluminescence Emissions from Hydrogen-Bonded Multicomponent Nontraditional Luminogens.

Langmuir

January 2025

Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.

Nontraditional luminogens (NTLs) without large π-conjugated aromatic structures have attracted a great deal of attention in recent years. Developing NTLs with red-shifted and enhanced emissions remains a great challenge. In this work, we developed a NTL composed of three components, i.

View Article and Find Full Text PDF

Dual Ratiometric Fluorescence Sensors Based on Chiral Carbon Dots for the Sensitive and Specific Detection of Arginine.

Anal Chem

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.

Arginine (Arg) is involved in tissue metabolism and regulates the immune function; thereby, achieving the detection of Arg is crucial for early diagnosis and treatment of diseases. Herein, dual ratiometric fluorescence sensors were prepared with the blue emission of levorotatory/dextrorotatory carbon dots (CDs) and the red emission of porphyrin (L/D-CDs-PP) for the sensitive and portable detection of Arg. Interestingly, L-CDs-PP and D-CDs-PP displayed not only the dual emission peaks at 493 and 650 nm but also different response modes to Arg; thus, they could serve as dual ratiometric fluorescence sensors to achieve the accurate and reliable detection of Arg, with the detection limit of 23.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!