A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Imaging technologies for monitoring the safety, efficacy and mechanisms of action of cell-based regenerative medicine therapies in models of kidney disease. | LitMetric

Imaging technologies for monitoring the safety, efficacy and mechanisms of action of cell-based regenerative medicine therapies in models of kidney disease.

Eur J Pharmacol

Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK. Electronic address:

Published: November 2016

The incidence of end stage kidney disease is rising annually and it is now a global public health problem. Current treatment options are dialysis or renal transplantation, which apart from their significant drawbacks in terms of increased morbidity and mortality, are placing an increasing economic burden on society. Cell-based Regenerative Medicine Therapies (RMTs) have shown great promise in rodent models of kidney disease, but clinical translation is hampered due to the lack of adequate safety and efficacy data. Furthermore, the mechanisms whereby the cell-based RMTs ameliorate injury are ill-defined. For instance, it is not always clear if the cells directly replace damaged renal tissue, or whether paracrine effects are more important. Knowledge of the mechanisms responsible for the beneficial effects of cell therapies is crucial because it could lead to the development of safer and more effective RMTs in the future. To address these questions, novel in vivo imaging strategies are needed to monitor the biodistribution of cell-based RMTs and evaluate their beneficial effects on host tissues and organs, as well as any potential adverse effects. In this review we will discuss how state-of-the-art imaging modalities, including bioluminescence, magnetic resonance, nuclear imaging, ultrasound and an emerging imaging technology called multispectral optoacoustic tomography, can be used in combination with various imaging probes to track the fate and biodistribution of cell-based RMTs in rodent models of kidney disease, and evaluate their effect on renal function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063540PMC
http://dx.doi.org/10.1016/j.ejphar.2016.06.056DOI Listing

Publication Analysis

Top Keywords

kidney disease
16
models kidney
12
cell-based rmts
12
safety efficacy
8
cell-based regenerative
8
regenerative medicine
8
medicine therapies
8
rodent models
8
beneficial effects
8
biodistribution cell-based
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!