The aim of this work was to investigate the relationship between the structure of gut microbial communities fed with different diets (i.e. high-protein-HP- versus high-fiber-HF-diet) and their functional stability when challenged with mild and acute doses of a mix of amoxicillin, ciprofloxacin, and tetracycline. We made use of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®)-a continuous model of the gastrointestinal tract-coupled with 16S-targeted Illumina and metabolomics (i.e. UHPLC-HRMS) analyses. Independently of the diet, the sudden exposure to an acute stress led to a modification of the microbial community structure, selecting for species belonging to Bacillus spp.; Clostridium cluster XIVa; Enterococci; Bacteroides; and Enterobacteriaceae. The antibiotic treatment led to a decrease in the number of operational taxonomic units (at least -10%). Cluster analysis of untargeted metabolic data showed that the antibiotic treatment affected the microbial activity. The impact on metabolites production was lower when the community was preexposed to mild doses of the antibiotic mix. This effect was stronger in the proximal colon for the HF diet and in the distal colon for the HP diet. Different diets shaped different gut microbial communities, which ecologically behaved similarly under stress conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mnfr.201600150 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!