Importance of air bubbles in the core of coated pellets: Synchrotron X-ray microtomography allows for new insights.

J Control Release

Univ. Lille, Inserm, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, 59000 Lille, France. Electronic address:

Published: September 2016

High-resolution X-ray microtomography was used to get deeper insight into the underlying mass transport mechanisms controlling drug release from coated pellets. Sugar starter cores were layered with propranolol HCl and subsequently coated with Kollicoat SR, plasticized with 10% TEC. Importantly, synchrotron X-ray computed microtomography (SR-μCT) allowed direct, non-invasive monitoring of crack formation in the film coatings upon exposure to the release medium. Propranolol HCl, as well as very small sugar particles from the pellets' core, were expulsed through these cracks into the surrounding bulk fluid. Interestingly, SR-μCT also revealed the existence of numerous tiny, air-filled pores (varying in size and shape) in the pellet cores before exposure to the release medium. Upon water penetration into the system, the contents of the pellet cores became semi-solid/liquid. Consequently, the air-pockets became mobile and fused together. They steadily increased in size (and decreased in number). Importantly, "big" air bubbles were often located in close vicinity of a crack within the film coating. Thus, they play a potentially crucial role for the control of drug release from coated pellets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2016.06.041DOI Listing

Publication Analysis

Top Keywords

coated pellets
12
air bubbles
8
synchrotron x-ray
8
x-ray microtomography
8
drug release
8
release coated
8
propranolol hcl
8
exposure release
8
release medium
8
pellet cores
8

Similar Publications

Bacterial biofilms exhibit remarkable resistance against conventional antibiotics and are capable of evading the humoral immune response. They account for nearly 80% of chronic infections in humans. Development of bacterial biofilms on medical implants results in their malfunctioning and subsequently leads to high mortality rates worldwide.

View Article and Find Full Text PDF

Background/objectives: Lactoferrin (Lf), a multifunctional iron-binding protein, has considerable potential for use as an active ingredient in food supplements due to its numerous positive effects on health. As Lf is prone to degradation, we aimed to develop a formulation that would ensure sufficient stability of Lf in the gastrointestinal tract and during product storage.

Methods: A simple, efficient, and well-established technology that has potential for industrial production was used for the double-coating of neutral pellet cores with an Lf layer and a protective enteric coating.

View Article and Find Full Text PDF

Polyetheretherketone (PEEK) is widely used in orthopedic and dental implants due to its excellent mechanical properties, chemical stability, and biocompatibility. However, its inherently bioinert nature makes it present weak osteogenic activity, which greatly restricts its clinical adoption. Herein, strontium (Sr) is incorporated onto the surface of PEEK using mussel-inspired polydopamine coating to improve its osteogenic activity.

View Article and Find Full Text PDF

The Biological Properties of Co-Doped Monetite Are Influenced by Thermal Treatment.

J Biomed Mater Res B Appl Biomater

February 2025

Bioassays and Cellular Dynamics Lab, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, São Paulo, Brazil.

Calcium phosphates, notably monetite, are valued biomaterials for bone applications owing to their osteogenic properties and rapid uptake by bone cells. This study investigates the enhancement of these properties through Cobalt doping, which is known to induce hypoxia and promote bone cell differentiation. Heat treatments at 700°C, 900°C, and 1050°C are applied to both monetite and Cobalt-doped monetite, facilitating the development of purer, more crystalline phases with varied particle sizes and optimized cellular responses.

View Article and Find Full Text PDF

Enhancement of Thermal, Mechanical, and Oxidative Properties of Polypropylene Composites with Exfoliated Hexagonal Boron Nitride Nanosheets.

ACS Omega

January 2025

Department of Materials Science and Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea.

This study investigates the enhancement of polypropylene (PP) composites through the incorporation of exfoliated hexagonal boron nitride (h-BN) nanosheets. The preparation process involved exfoliating h-BN in a liquid phase using a high-pressure homogenizer, followed by the coating of PP pellets with the exfoliated nanosheets using an acoustic mixer. Melt extrusion was then employed to fabricate h-BN-reinforced PP composite films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!