We have investigated the reaction between O2 and H2O, coadsorbed on the (101) surface of a reduced TiO2 anatase single crystal by scanning tunneling microscopy, density functional theory, temperature-programmed desorption, and X-ray photoelectron spectroscopy. While water adsorbs molecularly on the anatase (101) surface, the reaction with O2 results in water dissociation and formation of terminal OH groups. We show that these terminal OHs are the final and stable reaction product on reduced anatase. We identify OOH as a metastable intermediate in the reaction. The water dissociation reaction runs as long as the surface can transfer enough electrons to the adsorbed species; the energy balance and activation barriers for the individual reaction steps are discussed, depending on the number of electrons available. Our results indicate that the presence of donor dopants can significantly reduce activation barriers for oxygen reduction on anatase.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b04004DOI Listing

Publication Analysis

Top Keywords

tio2 anatase
8
anatase 101
8
101 surface
8
reaction water
8
water dissociation
8
activation barriers
8
reaction
6
anatase
5
reduction oxygen
4
oxygen tio2
4

Similar Publications

Cyclic Voltarefractometry of Single TiO Nanoparticles in Large Ensembles in Nonaqueous Electrolyte.

Anal Chem

January 2025

Nanobiotechnology Department of the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitaetsplatz 1, Senftenberg 01968, Brandenburg, Germany.

Single nanoparticle (NP) cyclic voltarefractometry (CVR), realized as wide-field surface plasmon resonance microscopy (SPRM) in combination with potential cycling, has been proposed and applied to the in situ study of TiO NPs. Electrochemical activity of TiO is mainly observed outside the electrochemical stability window of water. Therefore, the response of individual anatase (a-TiO) and rutile (r-TiO) NPs adsorbed on a gold layer was studied in 0.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles: a promising candidate for wound healing applications.

Burns Trauma

January 2025

Research Group of Immune Cell Communication, Department of Immune Medicine, Universitätsklinikum Regensburg | UKR, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.

Effective wound management and treatment are crucial in clinical practice, yet existing strategies often fall short in fully addressing the complexities of skin wound healing. Recent advancements in tissue engineering have introduced innovative approaches, particularly through the use of nanobiomaterials, to enhance the healing process. In this context, titanium dioxide nanoparticles (TiO NPs) have garnered attention due to their excellent biological properties, including antioxidant, anti-inflammatory, and antimicrobial properties.

View Article and Find Full Text PDF

We discuss the photoelectroanalytical performance of a brookite-phase titanium dioxide (TiO) platform electrodeposited onto graphene foam (GF) at low temperatures. The scalable electrosynthesis process eliminates the need for thermal annealing, which is impractical for carbon-based electrodes. Films resulting from a 10 min electrodeposition (TiO-10/GF) exhibit enhanced photocurrents, reaching 170 μA cm -twice the value for TiO films on traditional screen-printed carbon electrodes (82 μA cm ).

View Article and Find Full Text PDF

Super hydrophilic and super oleophobic carbon nanotube/TiO composite membranes for efficient separation of algal-derived oil/water emulsions.

Colloids Surf B Biointerfaces

December 2024

Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.

The separation of oil from microalgae aqueous emulsions is a critical step in producing algal-derived biofuels and nutraceuticals. This study presents the development of super hydrophilic and super oleophobic composite membranes to efficiently separate algal oil from oil/water emulsions. Carbon nanotubes (CNTs) were functionalized with polydopamine (PDA), polyethylene glycol (PEG), and titanium dioxide (TiO) nanoparticles and coated onto a mixed cellulose ester (MCE) substrate to fabricate the composite membranes.

View Article and Find Full Text PDF

Unraveling the mystery: effect of trapped air on platelet adhesion on hydrophobic nanostructured titanium dioxide.

Biomater Sci

January 2025

Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China.

Nature-inspired superhydrophobic materials have attracted considerable interest in blood-contacting biomedical applications due to their remarkable water-repellent and self-cleaning properties. However, the interaction mechanism between blood components and superhydrophobic surfaces remains unclear. To explore the effect of trapped air on platelet adhesion, we designed four distinct hydrophobic titanium dioxide (TiO) nanostructures with different fractions of trapped air.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!