Starches isolated from three different varieties of oat were modified with dual autoclaving-retrogradation treatment to make modified food starches with high contents of type 3 resistant starch (RS3). FT-IR spectroscopy showed increase in the ratio of intensity of 1047cm(-1)/1022cm(-1) on treatment. Morphology of the oat starches changed into a continuous network with increased values for onset temperature (To), peak temperature (Tp), and conclusion temperature (Tc). XRD showed an additional peak at 13° and increase in peak intensity at 20° inclusive of the major X-ray diffraction peaks which reflects formation of amylose-lipid complex from dual autoclaving-retrogradation cycle. Peaks at 13° and 20° are the typical peaks of the V-type pattern. Rheological analysis suggested that retrogradated oat starches showed shear thickening behavior as revealed from Herschel-Bulkely model and frequency sweep.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2016.06.019 | DOI Listing |
Food Sci Biotechnol
February 2018
1College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China.
Resistant starches (RS) were prepared from purple yam by dual autoclaving-retrogradation (DAS), and pullulanase debranching treatment (PDS). DAS and PDS were then hydrolyzed by α-amylase and amyloglucosidase to obtain DAS.H and PDS.
View Article and Find Full Text PDFFood Chem
December 2016
Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
Starches isolated from three different varieties of oat were modified with dual autoclaving-retrogradation treatment to make modified food starches with high contents of type 3 resistant starch (RS3). FT-IR spectroscopy showed increase in the ratio of intensity of 1047cm(-1)/1022cm(-1) on treatment. Morphology of the oat starches changed into a continuous network with increased values for onset temperature (To), peak temperature (Tp), and conclusion temperature (Tc).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!