Autofluorescence as indicator for detecting the surgical margins of medication-related osteonecrosis of the jaws.

Minerva Stomatol

Center of Oral Pathology and Laser Surgery, Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy -

Published: August 2016

Download full-text PDF

Source

Publication Analysis

Top Keywords

autofluorescence indicator
4
indicator detecting
4
detecting surgical
4
surgical margins
4
margins medication-related
4
medication-related osteonecrosis
4
osteonecrosis jaws
4
autofluorescence
1
detecting
1
surgical
1

Similar Publications

A Rapidly Synthesized, Ultrasmall Silver Nanocluster for Near-Infrared-II Imaging and Metabolic Studies.

Nano Lett

January 2025

State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

Article Synopsis
  • Near-infrared-II (NIR-II) imaging is an advanced technique that enhances deep anatomical visualization by reducing issues like autofluorescence and tissue absorption.
  • Current methods for creating NIR-II nanoprobes are inefficient, requiring significant time and effort, which calls for a quicker synthesis method.
  • The study introduces DNA-templated silver nanoclusters (Ag NCs) that can be produced in just 2 minutes and are small enough to penetrate muscle tissue, making them effective for studying metabolic pathways through NIR-II imaging after intramuscular injection.
View Article and Find Full Text PDF

NIR-II-excited off-on-off fluorescent nanoprobes for sensitive molecular imaging in vivo.

Nat Commun

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 1, Singapore, 117585, Singapore.

Strong background interference signals from normal tissues have significantly compromised the sensitive fluorescence imaging of early disease tissues with exogenous probes in vivo, particularly for sensitive fluorescence imaging of early liver disease due to the liver's significant uptake and accumulation of exogenous nanoprobes, coupled with high tissue autofluorescence and deep tissue depth. As a proof-of-concept study, we herein report a near-infrared-II (NIR-II, 1.0-1.

View Article and Find Full Text PDF

Stearic acid-capped mesoporous silica microparticles as novel needle-like-structured drug delivery carriers.

Eur J Pharm Biopharm

December 2024

School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom. Electronic address:

Mesoporous silica are widely utilised as drug carriers due to their large pore volume and surface area, which facilitate effective loading. Additionally, they can be used to enhance drugs stability and protect against enzymatic degradation due to their silica framework. However, without the addition of a capping material, the loaded cargo may be prematurely released before reaching the target site.

View Article and Find Full Text PDF

Caenorhabditis elegans gut and cuticle produce a disruptive amount of autofluorescence during imaging. Although C. elegans autofluorescence has been characterized, it has not been characterized at high resolution using both spectral and fluorescence lifetime-based approaches.

View Article and Find Full Text PDF

ATP-binding cassette G23 is required for Arabidopsis seed coat suberization.

Plant Sci

December 2024

Department of Life Science, Sogang University, Seoul 04107, Republic of Korea. Electronic address:

Suberin is an extracellular hydrophobic polymer deposited in seed coats that acts as a barrier to regulate the movement of ions, water, and gases, and protects seeds against pathogens. However, the molecular mechanisms underlying suberin deposition in the seed coat remain unknown. In this study, the in planta role of ATP-binding cassette G23 (ABCG23) was investigated in the Arabidopsis seed coat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!