During the period 1970-1981 radioisotope radical surgery was performed in 270 patients suffering from cervical carcinoma stage Ib und II. During the development of the method, which has a three-stage process, the rate of cases with complete lymphadenectomy was increased from 52.5% to 75.8%. The 5-year recurrence mortality rate decreased in stage Ib patients during this period from 15.8% to 8.4%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-2008-1036396 | DOI Listing |
Med Oncol
January 2025
Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, MO, USA.
Lymphedema is a chronic condition caused by the accumulation of protein-rich fluid in the interstitial tissue, resulting in edema and a diminished quality of life. When first-line treatments like complete decongestive therapy (CDT) fail, surgical options are considered. These include physiological procedures like lymphaticovenous anastomosis (LVA) and vascularized lymph node transfer (VLNT), which aim to restore lymphatic function, as well as reductive procedures such as liposuction and excisional techniques, which reduce limb volume.
View Article and Find Full Text PDFPhytochem Anal
January 2025
Department of Pharmacy, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.
Introduction: Antimicrobial resistance and free radical-mediated oxidative stress and inflammation involved in many pathological processes have become treatment challenges. One strategy is to search for antimicrobial and antioxidant ingredients from natural aromatic plants. This study established a rapid and high-throughput effect-component analysis method to screen active ingredients from Ligusticum chuanxiong essential oil (CXEO).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China.
Despite the development of various controlled release systems for antitumor therapies, off-target side effects remain a persistent challenge. In situ therapeutic synthesis from biocompatible substances offers a safer and more precise alternative. This study presents a hypoxia-initiated supramolecular free radical system capable of inducing intracellular polymerization, thereby disrupting the cytoskeleton and organelles within 4T1 cells.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
Environmentally persistent free radicals (EPFRs) have been widely detected in polycyclic aromatic hydrocarbon (PAH)-contaminated soils, but the activation of persulfate by inherent EPFRs in PAH-contaminated soil for the transformation of PAHs remains unclear. In the present study, benzo[]pyrene (B[]P) was selected as a representative PAH and its transformation in a persulfate/B[]P-contaminated soil system was studied without the addition of any other activator. Results indicated that EPFRs in the soil activated persulfate to produce reactive oxygen species (ROS) and degraded B[]P.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Instytut Chemii Organicznej PAN: Instytut Chemii Organicznej Polskiej Akademii Nauk, Institute of Organic Chemistry, Kasprzaka 44/52, 01-224, Warsaw, POLAND.
The development of straightforward synthetic methods for photoactive polycyclic aromatic hydrocarbons (PAHs) that avoid Pd-catalyzed or radical-based processes remains a challenge. Such methods are essential to reducing the cost and environmental impact of organic photodevices. In this work, we present a one-pot synthetic approach for creating novel bipolar PAHs with extended π-conjugation, which are not accessible via conventional Pd-catalyzed routes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!