Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nutrients absorbed by the epithelial cells of the millipede midgut are channeled to a contiguous population of hepatic cells where sugars are stored as glycogen. In insects and other arthropods, however, nutrients absorbed by midgut epithelia are first passed across the epithelial basal surface to the hemolymph before storage in fat body. The inter-digitation of cellular processes at the interface of hepatic and midgut epithelial cells offers a vast surface area for exchange of nutrients. At this interface, numerous small vesicles with the dimensions of exosomes (∼30nm) may represent the mediators of nutrient exchange. Longevity and the developmental arrest of diapause are associated with reduced insulin signaling. The long lifespans for which millipedes are known may be attributable to a novel pathway with reduced insulin signaling represented by the novel arrangement of hepatic storage cells and midgut epithelial absorbing cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinsphys.2016.06.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!