Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Computerized tomography scan (CT scan) imaging and finite element analysis were employed to investigate how the geometric composition of microneedles affects their mechanical strength and penetration characteristics. Simulations of microneedle arrays, comprising triangular, square and hexagonal microneedle base, revealed a linear dependence of the mechanical strength to the number of vertices in the polygon base. A laser-enabled, micromoulding technique was then used to fabricate 3×3 microneedle arrays, each individual microneedle having triangular, square or hexagonal base geometries. Their penetration characteristics into ex-vivo porcine skin, were investigated for the first time by CT scan imaging. This revealed greater penetration depths for the triangular and square-based microneedles, demonstrating CT scan as a powerful and reliable technique for studying microneedle skin penetration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2016.06.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!