Light chain (AL) amyloidosis, caused by deposition of amyloidogenic immunoglobulin light chains (LCs), is the most common systemic form in industrialized countries. Still open questions, and premises for developing targeted therapies, concern the mechanisms of amyloid formation in vivo and the bases of organ targeting and dysfunction. Investigating amyloid material in its natural environment is crucial to obtain new insights on the molecular features of fibrillar deposits at individual level. To this aim, we used Fourier transform infrared (FTIR) microspectroscopy for studying in situ unfixed tissues (heart and subcutaneous abdominal fat) from patients affected by AL amyloidosis. We compared the infrared response of affected tissues with that of ex vivo and in vitro fibrils obtained from the pathogenic LC derived from one patient, as well as with that of non amyloid-affected tissues. We demonstrated that the IR marker band of intermolecular β-sheets, typical of protein aggregates, can be detected in situ in LC amyloid-affected tissues, and that FTIR microspectroscopy allows exploring the inter- and intra-sample heterogeneity. We extended the infrared analysis to the characterization of other biomolecules embedded within the amyloid deposits, finding an IR pattern that discloses a possible role of lipids, collagen and glycosaminoglycans in amyloid deposition in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931462 | PMC |
http://dx.doi.org/10.1038/srep29096 | DOI Listing |
Nanoscale
December 2024
School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
Innovations in nanostructured surfaces have found a practical place in the medical area with use in implant materials for post-operative infection prevention. These textured surfaces should be dual purpose: (1) bactericidal on contact and (2) resistant to biofilm formation over prolonged periods. Here, hydrothermally etched titanium surfaces were tested against two highly antimicrobial resistant microbial species, methicillin-resistant and .
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2025
School of Science, RMIT University, 2476, Melbourne, Victoria 3001, Australia.
Synchrotron sourced Fourier transform infrared (SS FTIR) microspectroscopy was employed to investigate the biological effects on the neuron-like pheochromocytoma (PC 12) cells after exposure to synchrotron sourced terahertz (SS THz) radiation. Over 10 min of exposure, the PC 12 cells received a total energy of 600 J m, with a total incident power density of ∼1.0 W m (0.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
X-ray radiation treatments are largely adopted in radiotherapy, and Fourier-transform infrared microspectroscopy (μ-FTIR) has already been demonstrated to be a useful instrument for monitoring radiotherapy effects. Previous works in this field have focused on studying the changes occurring in cells when they are fixed immediately after the irradiation or 24 and 48 h later. In the present paper, changes occurring in SH-SY5Y neuroblastoma cells in the first hours after the irradiation are examined to obtain information on the processes taking place in this not-yet-investigated time window by using μ-FTIR.
View Article and Find Full Text PDFActa Trop
January 2025
Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand. Electronic address:
Metabolic dysfunction-associated steatotic liver disease (MASLD) and opisthorchiasis, caused by Opisthorchis viverrini (O. viverrini) infection, frequently co-exist in Northeast Thailand. However, the underlying pathophysiology remains unknown.
View Article and Find Full Text PDFFEMS Microbiol Ecol
November 2024
Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64000 Pau, France.
In this review, selected examples are presented to demonstrate how microfluidic approaches can be utilized for investigating microbial life from deep geological environments, both from practical and fundamental perspectives. Beginning with the definition of the deep underground biosphere and the conventional experimental techniques employed for these studies, the use of microfluidic systems for accessing critical parameters of deep life in geological environments at the microscale is subsequently addressed (high pressure, high temperature, low volume). Microfluidics can simulate a range of environmental conditions on a chip, enabling rapid and comprehensive studies of microbial behavior and interactions in subsurface ecosystems, such as simulations of porous systems, interactions among microbes/microbes/minerals, and gradient cultivation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!