Nucleic Acid-Targeting Pathways Promote Inflammation in Obesity-Related Insulin Resistance.

Cell Rep

Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, Toronto, ON M5G 1L7, Canada; Department of Pathology, University Health Network, Toronto, ON M5G 2C4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:

Published: July 2016

Obesity-related inflammation of metabolic tissues, including visceral adipose tissue (VAT) and liver, are key factors in the development of insulin resistance (IR), though many of the contributing mechanisms remain unclear. We show that nucleic-acid-targeting pathways downstream of extracellular trap (ET) formation, unmethylated CpG DNA, or ribonucleic acids drive inflammation in IR. High-fat diet (HFD)-fed mice show increased release of ETs in VAT, decreased systemic clearance of ETs, and increased autoantibodies against conserved nuclear antigens. In HFD-fed mice, this excess of nucleic acids and related protein antigens worsens metabolic parameters through a number of mechanisms, including activation of VAT macrophages and expansion of plasmacytoid dendritic cells (pDCs) in the liver. Consistently, HFD-fed mice lacking critical responders of nucleic acid pathways, Toll-like receptors (TLR)7 and TLR9, show reduced metabolic inflammation and improved glucose homeostasis. Treatment of HFD-fed mice with inhibitors of ET formation or a TLR7/9 antagonist improves metabolic disease. These findings reveal a pathogenic role for nucleic acid targeting as a driver of metabolic inflammation in IR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354586PMC
http://dx.doi.org/10.1016/j.celrep.2016.06.024DOI Listing

Publication Analysis

Top Keywords

hfd-fed mice
16
insulin resistance
8
nucleic acid
8
metabolic inflammation
8
inflammation
5
metabolic
5
nucleic
4
nucleic acid-targeting
4
acid-targeting pathways
4
pathways promote
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!