The internal N(6)-methyladenosine (m(6)A) methylation of eukaryotic nuclear RNA controls post-transcriptional gene expression, which is regulated by methyltransferases (writers), demethylases (erasers), and m(6)A-binding proteins (readers) in cells. The YTH domain family proteins (YTHDF1-3) bind to m(6)A-modified cellular RNAs and affect RNA metabolism and processing. Here, we show that YTHDF1-3 proteins recognize m(6)A-modified HIV-1 RNA and inhibit HIV-1 infection in cell lines and primary CD4(+) T-cells. We further mapped the YTHDF1-3 binding sites in HIV-1 RNA from infected cells. We found that the overexpression of YTHDF proteins in cells inhibited HIV-1 infection mainly by decreasing HIV-1 reverse transcription, while knockdown of YTHDF1-3 in cells had the opposite effects. Moreover, silencing the m(6)A writers decreased HIV-1 Gag protein expression in virus-producing cells, while silencing the m(6)A erasers increased Gag expression. Our findings suggest an important role of m(6)A modification of HIV-1 RNA in viral infection and HIV-1 protein synthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961459 | PMC |
http://dx.doi.org/10.7554/eLife.15528 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!