Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cytotoxic agents are commonly added to cultured cells in the laboratory to investigate their efficacy, mechanism of action, and therapeutic potential. Most of these agents trigger cell death by apoptosis, which is also the most common form of cell death during development, aging, homeostasis, and eradication of disease. Treatment of cells with cytotoxic agents is therefore useful for investigating basic mechanisms of cell death in the human body. Actinomycin D, a cytotoxic agent isolated from Streptomyces, induces apoptosis in a variety of cell lines including the histiocytic lymphoma cell line U937. Treatment of U937 cells with actinomycin D provides an ideal model of drug-induced apoptosis that can also be used as a positive control for comparison with other treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1101/pdb.prot087130 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!