In oral cancer, loss of function due to surgery can be unacceptable, designating the tumour as functionally inoperable. Other curative treatments can then be considered. Currently, predictions of these functional consequences are subjective and unreliable. We want to create patient-specific models to improve and objectify these predictions. A first step was taken by controlling a 3D lip model with volunteer-specific sEMG activities. We focus on the lips first, because they are essential for speech, oral food transport, and facial mimicry. Besides, they are more accessible to measurements than intraoral organs. 3D lip movement and corresponding sEMG activities are measured in five healthy volunteers, who performed 19 instructions repeatedly, to create a quantitative lip model by establishing the relationship between sEMG activities of eight facial muscles bilaterally on the input side and the corresponding 3D lip displacements on the output side. The relationship between 3D lip movement and sEMG activities was accommodated in a state-space model. A good relationship between sEMG activities and 3D lip movement was established with an average root mean square error of 2.43 mm for the first-order system and 2.46 mm for the second-order system. This information can be incorporated into biomechanical models to further personalise functional outcome assessment after treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355525PMC
http://dx.doi.org/10.1007/s11517-016-1511-zDOI Listing

Publication Analysis

Top Keywords

semg activities
20
lip movement
16
oral cancer
8
lip model
8
relationship semg
8
semg
6
lip
6
activities
5
predicting lip
4
movement
4

Similar Publications

Introduction And Objective: Surface electromyography (sEMG) measurements are a valid method for sublesional muscle activity following spinal cord injury (SCI). In the literature there are few reports evaluating the effect of robotic assisted gait training (RAGT) on the sEMG properties change in SCI patients. The aim of this study was to evaluate the influence of RAGT on observed change of sEMG, and in 64 incomplete SCI patients in the sub-acute stage in relation to functional scales.

View Article and Find Full Text PDF

Exploring pattern-specific components associated with hand gestures through different sEMG measures.

J Neuroeng Rehabil

December 2024

School of Information Science and Technology, Fudan University, Shanghai, 200433, China.

For surface electromyography (sEMG) based human-machine interaction systems, accurately recognizing the users' gesture intent is crucial. However, due to the existence of subject-specific components in sEMG signals, subject-specific models may deteriorate when applied to new users. In this study, we hypothesize that in addition to subject-specific components, sEMG signals also contain pattern-specific components, which is independent of individuals and solely related to gesture patterns.

View Article and Find Full Text PDF

Introduction: Neck pain affects 203 million people globally and is prevalent in various settings due to factors like poor posture, lack of exercise, and occupational hazards. Therefore, addressing ergonomic issues with solutions like a wearable robotic device is crucial. This research presents a novel assistive exosuit, characterized by its slim and lightweight structure and intuitive control without the use of hands, designed to mitigate muscle fatigue in the neck and shoulders during prolonged flexed neck posture.

View Article and Find Full Text PDF

Ankle-foot orthoses (AFOs) have been commonly prescribed for stroke survivors with foot drop, but their impact on the contractions of paretic tibialis anterior (TA) and medial gastrocnemius (MG) has remained inconclusive. This study thus investigated the effect of AFOs on these muscle contractions in stroke survivors. The contractions of paretic TA and MG muscles were assessed in twenty stroke patients and compared between walking with and without AFOs, using a novel wearable dynamic ultrasound imaging and sensing system.

View Article and Find Full Text PDF

Surface electromyography (sEMG) signals reflect the local electrical activity of muscle fibers and the synergistic action of the overall muscle group, making them useful for gesture control of myoelectric manipulators. In recent years, deep learning methods have increasingly been applied to sEMG gesture recognition due to their powerful automatic feature extraction capabilities. sEMG signals contain rich local details and global patterns, but single-scale convolutional networks are limited in their ability to capture both comprehensively, which restricts model performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!