Alternating current calorimeter for specific heat capacity measurements at temperatures below 10 K and pressures up to 10 GPa.

Rev Sci Instrum

Cryogenics and Instrumental Analysis Division, N-BARD, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan.

Published: June 2016

A developed alternating current calorimeter for measuring the absolute value of specific heat C of a very small sample under a pressure up to 10 GPa and low temperature below 10 K is described. A Bridgman anvil cell made of tungsten carbide with a top diameter of 3 mm is used. A hollow at the top prevents expansion of the sample space over the anvil top. Two chip resistors, which act as a thermometer and a heater, are mounted on the outer part of a copper-beryllium gasket with a frying pan-like shape. Thus, the thermometer is not pressurized. In order to isolate the gasket from the anvil thermally, diamond powder with a grain size of 0.25 μm is placed on the anvil top. Two jumps of C at the superconducting transitions of Pb (3.3 mg) and In (5.0 mg) are observed under various pressures up to 9 GPa, as clearly as those at the ambient pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4952959DOI Listing

Publication Analysis

Top Keywords

alternating current
8
current calorimeter
8
specific heat
8
pressures gpa
8
anvil top
8
calorimeter specific
4
heat capacity
4
capacity measurements
4
measurements temperatures
4
temperatures pressures
4

Similar Publications

Introduction: This paper examines the use of local antibiotic therapy in one-stage septic revision surgery for late periprosthetic joint infections (PJIs). This case study suggests that morselized bone allografts impregnated with antibiotics in powder form are a preferable alternative to polymethyl methacrylate (PMMA) because they can generate higher local antibiotic concentrations. Current research also recommends using vancomycin and aminoglycosides as the preferred choice of antibiotics, as they may have low diffusion in tissues when administered intravenously, but are effective when administered locally.

View Article and Find Full Text PDF

Malignant hypertension: current challenges, prevention strategies, and future perspectives.

Front Cardiovasc Med

December 2024

Department of Midwifery, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.

Introduction: Based on office blood pressure (BP) values, hypertension is categorized into three stages: stage 1 (140-159/90-99 mmHg), stage 2 (160-179/100-109 mmHg), and stage 3 (≥180/≥110 mmHg). Malignant hypertension (MHT) is characterized by extreme BP elevation (systolic blood pressure above 200 mmHg and diastolic blood pressure above 130 mmHg) and acute microvascular damage affecting various organs, particularly the retinas, brain, and kidneys.

Objectives: The pathogenesis, predisposing variables, therapy, and preventive strategies for MHT were examined in this review.

View Article and Find Full Text PDF

Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming.

View Article and Find Full Text PDF

RNA nanotherapeutics for hepatocellular carcinoma treatment.

Theranostics

January 2025

Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality worldwide, particularly due to the limited effectiveness of current therapeutic options for advanced-stage disease. The efficacy of traditional treatments is often compromised by the intricate liver microenvironment and the inherent heterogeneity. RNA-based therapeutics offer a promising alternative, utilizing the innovative approach of targeting aberrant molecular pathways and modulating the tumor microenvironment.

View Article and Find Full Text PDF

Electrocatalytic urea synthesis from carbon dioxide (CO2) and nitrate (NO3-) offers a promising alternative to traditional industrial methods. However, current catalysts face limitations in the supplies of CO* and Nrelated* intermediates, and their coupling, resulting in unsatisfactory urea production efficiency and energy consumption. To overcome these challenges, we carried out tandem electrosynthesis approach using ruthenium dioxide-supported palladium-gold alloys (Pd2Au1/RuO2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!